Training Shallow and Thin Networks for Acceleration via KD with Conditional Adversarial Networks

论文地址:https://arxiv.org/abs/1709.00513

 

这是2017年的一篇文章。在本文之前的监督学习的方法一般是通过最小化确定的损失函数来拟合学生和老师,本文通过cGANs来学习适合的loss,更好的进行知识的迁移。其训练过程如下:

Discriminator的更新过程如下:

但Discriminator只使用学生和老师的标签作为loss函数的输入会让训练不稳定且缓慢,为了解决这个问题,作者将Teacher和Student的输出的概率分布的vector同时作为loss函数的输入,需要注意这里用的是未加负号的Binary Cross-entropy,所以训练中对(5)式是最大化:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值