论文阅读——基于观测数据的时间序列因果推断综述

本文回顾了基于观测数据的时间序列因果推断方法,涵盖Granger因果、信息论、因果网络结构学习及非线性状态空间模型等。探讨了Lasso-GRanger、Copula-Granger、符号动态归一化传递熵(SDNDTE)、归一化有效传递熵(NETE)等创新技术,并指出现有方法在非平稳序列和高维数据中的挑战。文章提到了用于复杂系统因果关系推断的最新算法,如PCMCI+和CCM,并讨论了它们在实际应用中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

国防科大2022年3月的综述

 1.Granger

多元Granger: VAR+条件集,P(X|Y)=>条件VAR模型,比较y与y^来判定因果关系。

(加入条件集,消除其它变量影响)

条件Granger:用矩阵表示参数,简化计算。并提出基于\chi _{}^{2}检验的因果判定方法。

检验方法的创新,或者先变换空间在创新都能提高Granger适用性。

Lasso-GRanger:添加Lasso进行变量筛选,降低计算复杂度。

Copular-Granger:结合Lasso-Granger和潜在因果模型,用D-分离排除混杂因素,用Granger的“非超常分布”识别因果关系。(有点意思——那可以结合反事实计算吗?)

2.信息论

这些方法课衡量因果关系的强度,但对方向性未准确。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值