上一篇制造业综述中有提到该文章有提到从时间角度在线和离线故障诊断类型考虑因果关系,且用的是Granger因果。虽然文献有些老,感觉可能对自己有所启发,故特意找来看看。
Alizadeh E, El Koujok M, Ragab A, et al. A data-driven causality analysis tool for fault diagnosis in industrial processes[J]. IFAC-PapersOnLine, 2018, 51(24): 147-152.
知识点:
1. 过程的平稳性是在调查因果关系分析之前需要解决的一个重要部分。本文考虑了两种常见的平稳性,即趋势平稳性和差异平稳性。
(1)趋势平稳性:=常数+确定的平均趋势+均值问0的平稳状态
一般通过KPSS检验得到,就是假设H0平稳,如果拒绝H0那就是不平稳。
差异平稳DSP:D个不同趋势的时间,D=1时,可表示为,即△y=随机游走+极小值,故D=1,则y(t+1)=y(t)=c。
(2)协整检验:Granger引入协整,考虑x(