用于工业过程故障诊断的数据驱动因果分析工具

文章探讨了在工业过程中利用数据驱动的Granger因果分析工具进行故障诊断。研究涉及趋势和平稳性的概念,以及协整检验在确定因果关系中的应用。Granger因果关系的计算和实验表明其在诊断中发挥作用,但文中也提出了关于因果强度量化和阀值选择的疑问,暗示了对现有方法的改进需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一篇制造业综述中有提到该文章有提到从时间角度在线和离线故障诊断类型考虑因果关系,且用的是Granger因果。虽然文献有些老,感觉可能对自己有所启发,故特意找来看看。

Alizadeh E, El Koujok M, Ragab A, et al. A data-driven causality analysis tool for fault diagnosis in industrial processes[J]. IFAC-PapersOnLine, 2018, 51(24): 147-152.


知识点:

1. 过程的平稳性是在调查因果关系分析之前需要解决的一个重要部分。本文考虑了两种常见的平稳性,即趋势平稳性和差异平稳性。

(1)趋势平稳性:=常数+确定的平均趋势+均值问0的平稳状态

一般通过KPSS检验得到,就是假设H0平稳,如果拒绝H0那就是不平稳。

 差异平稳DSP:D个不同趋势的时间,D=1时,可表示为,即△y=随机游走+极小值,故D=1,则y(t+1)=y(t)=c。

 (2)协整检验:Granger引入协整,考虑x(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值