灵脉SAST:基于AI大模型的代码审计,智能修复与漏洞验证一步到位

Forrester的定义:

Forrester将静态代码分析工具定义为一种用于分析源代码的技术,主要目的是在代码编写阶段发现潜在的安全漏洞和质量问题。

静态代码分析工具通过以下方式实现其功能:

• 代码解析:分析代码的语法和结构,识别代码中的逻辑错误、语法问题等。

• 规则匹配:将代码与预定义的安全规则和编码标准进行对比,检测不符合规范的地方。

• 安全漏洞检测:在不运行代码的情况下,识别可能导致安全问题的代码模式,如SQL注入、跨站脚本攻击(XSS)等。

• 集成能力:通常可以集成到开发环境(IDE)或持续集成/持续交付(CI/CD)流程中,以便在开发早期发现问题。

Gartner的定义

Gartner将静态代码分析工具定义为“一组用来指示安全漏洞情况,设计用来分析应用程序在编码和设计阶段下源代码、字节码、二进制的技术”。

具体来说,静态代码分析工具的主要功能包括:

• 源代码分析:在代码编写阶段对源代码进行分析,检测潜在的安全漏洞和质量问题。

• 字节码和二进制分析:除了源代码,还可以分析编译后的字节码或二进制文件,以发现更深层次的问题。

• 设计阶段支持:帮助开发人员在设计阶段就识别潜在问题,从而减少后期修复的成本。

• 规则驱动:通过预定义的规则集来检测代码中的问题,这些规则通常基于已知的安全漏洞模式和最佳实践。

总结Forrester和Gartner对静态代码分析工具的定义都强调了其在代码编写阶段发现潜在问题的能力,但Gartner更强调对字节码和二进制文件的分析能力,以及在设计阶段的支持。这些工具通过代码解析、规则匹配和安全漏洞检测等功能,帮助开发团队在软件开发生命周期的早期阶段识别并修复问题,从而提高代码质量和安全性。

根据笔者调研到的数据显示,目前悬镜提供的代码审计工具灵脉SAST已经实现了基于AI的漏洞修复与漏洞验证功能。

灵脉SAST接入AI大模型智能算法:通过将用户代码进行分块并构建向量索引、建立用户代码向量库,基于RAG及LLM编排技术,AI大模型对需要修复的漏洞代码进行检索,快速精确地匹配并提供适合当前代码上下文的修复方案及修复建议。

软件开发团队在开发过程中解决代码安全问题,特别是在处理大规模代码库时,灵脉SAST的AI智能修复功能可以大幅度减少人工审查的工作量和时间,加速开发进度。

传统的SAST工具依赖于预定义的规则或模板来识别代码中的缺陷,但这些方法在处理复杂的代码上下文时,可能会产生较高的误报率或漏报问题。

灵脉SAST结合自然语言处理以及知识图谱技术,通过收集和处理代码库、历史缺陷数据、误报案例、知识库正确案例等数据,将代码的控制流和数据流信息(如函数调用关系、依赖关系、库函数文档等)构建成知识图谱,从而学习并构建与代码安全专家相当的智能漏洞验证能力:

1. 跨文件、跨函数的复杂分析能力

传统SAST工具通常无法很好地理解代码的全局上下文,特别是在函数间调用和文件间依赖的场景下。灵脉SAST能够准确分析跨文件、跨函数的依赖关系,并基于此提供更加精准的审计建议。

2. 提高审计效率

通过自动化分析大规模代码库,减少了人工审计工作量,开发团队可以依赖灵脉SAST AI模型的分析建议,快速定位潜在缺陷、提升审计效率。

3. 减少误报和漏报

通过不断收集和学习新的代码样本、历史缺陷数据和误报案例,灵脉SAST AI检测模型能够不断优化检测准确度,更精确地识别真实缺陷、缓解误报。

AI强化了检测精准度,灵脉SAST AI模型强化了针对命令注入、文件操作漏洞、SQL注入、XPath注入、XSS跨站脚本、不安全随机值、弱加密算法、弱哈希算法、Cookie安全性问题以及信任边界破坏等缺陷类型的分析能力;同时在评估缺陷等级时,会进行跨文件、跨函数的方式综合上下文信息,提供更加精准的等级判定。

同时了解到灵脉SAST的知识库规则已支持9000+检测规则,其中:

1)Java:新增40+规则,包括Android、CWE等标准集;

2)C/C++:新增10+规则,包括通用规则集、AUTOSAR C++14等标准集;

3)Go:新增10+规则,包括通用规则集、CWE、OWASP 2021 TOP10、OWASP 2017 TOP10等标准集。

随着企业软件安全需求的全球化,特别是海外研发中心或外包开发团队的增加,静态应用安全测试(SAST)工具需要支持多语言环境,以适应全球化团队的沟通与协作。悬镜灵脉SAST 还支持知识库规则英文查阅、平台中英文页面、英文生成报告内容等,可满足国内外资企业、跨国公司以及海外企业需求。

### 使用开源代码模型进行软件漏洞检测、验证修复 #### 利用DeepSeek-V2进行自动化漏洞检测修复 DeepSeek-Coder-V2能够帮助开发者自动识别并修复代码中的潜在安全漏洞。这一功能基于其强大的自然语言理解和代码分析能力,使得它不仅可以在编写过程中提供即时反馈,还能对现有项目进行全面扫描以查找安全隐患[^1]。 对于具体的实现方式: - **静态应用安全测试 (SAST)**:通过解析源码文件来寻找可能存在的缺陷模式,比如SQL注入、跨站脚本攻击(XSS)等常见问题。由于支持多达338种不同的编程语言,这意味着几乎所有的现代应用程序都可以被有效覆盖[^3]。 - **动态应用安全测试 (DAST)**:模拟真实的网络请求环境来进行黑盒测试,从而发现运行时可能出现的安全风险。虽然这通常需要额外配置服务器端组件,但对于评估Web服务接口安全性非常有用。 当检测到可疑区域之后,DeepSeek-Coder-V2会尝试自动生成修正建议或直接修改有问题的部分,同时确保遵循最佳实践指南完成必要的重构工作,如调整变量命名约定或是优化算法效率等方面。 以下是使用Python编写的简单示例程序片段展示如何调用API执行上述操作: ```python from deepseek_coder_v2 import SecurityScanner, Fixer def scan_and_fix_code(file_path): scanner = SecurityScanner() issues = scanner.scan_file(file_path) fixer = Fixer() for issue in issues: print(f"Found potential vulnerability at line {issue.line_number}: {issue.description}") fixed_content = fixer.apply_suggestions(issue) with open(file_path, 'w') as f: f.write(fixed_content) if __name__ == "__main__": file_to_check = "example.py" scan_and_fix_code(file_to_check) ``` 此段代码首先创建了一个`SecurityScanner`实例用于读取指定路径下的文件内容并对其进行审查;接着遍历返回的结果列表,针对每一个标记出来的错误点调用了另一个名为`Fixer`的对象所提供的方法去实施相应的改进措施,并最终保存更新后的版本回原位置。 值得注意的是,尽管像CodeLLM、Starcoder2这样的其他框架也可能具备相似的功能集,但在处理复杂度较高的任务时,拥有更大规模参数量级和支持更多种类语法特性的DeepSeek-Coder-V2往往能带来更优的表现效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值