Nowadays, many people want to go to Shanghai to visit the World Exhibition. So there are always a lot of people who are standing along a straight line waiting for entering. Assume that there are N (2 <= N <= 1,000) people numbered 1..N who are standing in the same order as they are numbered. It is possible that two or more person line up at exactly the same location in the condition that those visit it in a group.
There is something interesting. Some like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of X (1 <= X <= 10,000) constraints describes which person like each other and the maximum distance by which they may be separated; a subsequent list of Y constraints (1 <= Y <= 10,000) tells which person dislike each other and the minimum distance by which they must be separated.
Your job is to compute, if possible, the maximum possible distance between person 1 and person N that satisfies the distance constraints.
Input
First line: An integer T represents the case of test.
The next line: Three space-separated integers: N, X, and Y.
The next X lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= N. Person A and B must be at most C (1 <= C <= 1,000,000) apart.
The next Y lines: Each line contains three space-separated positive integers: A, B, and C, with 1 <= A < B <= C. Person A and B must be at least C (1 <= C <= 1,000,000) apart.
Output
For each line: A single integer. If no line-up is possible, output -1. If person 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between person 1 and N.
Sample Input
1 4 2 1 1 3 8 2 4 15 2 3 4
Sample Output
19
给你n,x,y x代表以后输入的ABC AB之间最大距离是C B-A<=C所以 加边 A->B 权值为C
y则反之 B-A>=C->A-B<=-C->边B->A权值为-C,以1为源点,如果有负环直接输出-1,没有看能否1到达n
#include <bits/stdc++.h>
using namespace std;
const int maxn=1100;
const int maxm=21000;
const int INF=0x3f3f3f3f;
struct node
{
int to;
int va;
int next;
} edge[maxm];
int dis[maxn],vis[maxn],used[maxn],head[maxn];
queue<int>Q;
int ans=0;
int N;
void add(int u,int v,int w)
{
edge[ans].to=v;
edge[ans].va=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
memset(used,0,sizeof(used));
memset(vis,0,sizeof(vis));
memset(head,-1,sizeof(head));
}
int spfa(int root)
{
for(int i=1; i<=N; i++)
dis[i]=INF;//初始化为无穷,所求是最大值最短路
while(!Q.empty())
Q.pop();
Q.push(root);
dis[root]=0;//入队,标记距离
vis[root]=1;
used[root]++;
while(!Q.empty())
{
int u=Q.front();
Q.pop();
vis[u]=0;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
node e=edge[i];
int v=e.to;
if(dis[v]>dis[u]+e.va)
{
dis[v]=dis[u]+e.va;
if(!vis[v])
{
vis[v]=1;
used[v]++;//判断是否会出现负环
if(used[v]>N)
{
return -1;
}
Q.push(v);
}
}
}
}
return 0;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
int n,x,y;
scanf("%d%d%d",&n,&x,&y);
int u,v,w;
N=n;
for(int i=1; i<=x; i++)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
for(int i=1; i<=y; i++)
{
scanf("%d%d%d",&u,&v,&w);
add(v,u,-w);
}
int f=spfa(1);
if(!f)
{
if(dis[n]==INF)
{
printf("-2\n");
}
else
printf("%d\n",dis[n]);
}
else
printf("%d\n",f);
}
return 0;
}