蓝图
技术类
业务类
2023
中国金融科技行业洞察报告
【技术类概览】
iResearch : FinTech -技术战略矩阵(2023)
矩阵用例解读:TDaas
TDaas ( Trusted Data ( intelligence ) as a Service ),可信数据(智能)即服务。是由艾瑞咨询可信科技研究团队定义的一项“满足业务敏捷响应、高互通、高可用、可持续”的可信数据流通产品形式与服务理念。是一项值得隐私计算厂商与行业用户重点关注的重要战略技术趋势。2028年,60%以上的金融机构将通过金融级TDaaS获取安全、合规的数据调用及数据智能服务。
隐私计算
决策智能
RPA
云原生
基础云-信创
【业务类概览】
数字人民币
监管合规
营销
风控
【厂商介绍】
恒生报告
安全
数据库适配改造进入深水区,平滑迁移将是金融行业数据库改造的重中之重
随着信创基础设施的上线,信创云建设将助力金融机构完成云原生和低延时的转型
DBPaaS管理平台将成为提升数据库应用、运维效率的关键
跨平台技术转码技术将成为信创客户端快速落地实现现有资产复用的有效途径
由"开发安全"演进到"安全开发",DevSecOps将成为安全研发最佳解决方案
混沌工程将成为保证金融信息系统稳定性的重要手段
数据
湖仓一体、数据编织技术将进一步统一企业数据资产的管控
数据处理、数据应用的平民化将加速企业数智化转型和升级
领域知识与深度学习的融合创新,将开启金融AI普及泛化的新阶段
场景驱动图数据库基础设施建设,高性能大规模图计算将是必争之地
数字人将走向交互式,从本质上改善线上线下服务体验
性能
用内存计算弥补数据库相关性能会逐步成为核心交易系统的主流
业务开发逻辑下沉到平台将成为高性能开发的趋势
部分平台功能硬件化/内核化是高性能平台发展的趋势
超融合存储计算引擎将是数据技术融合的下一站
数字普惠金融助推包容性设计成为用户体验新趋势
效率
基于企业架构资产的低码开发平台,将助力企业业务创新
RPA将融合更多技术、组件,成为企业级集成平台
在数据要素的确权、流通、交易环节中,区块链及其衍生的可信技术将成为关键支撑技术
金融科技的落地进入标准建设阶段,并进一步推动行业生态的发展
2022
恒生报告
数据
项目级大数据到企业级大数据平台发展
汇总业务系统各类数据,进行统一抽取,统一清洗,形成标准化的数据提供给下游应用
典型的应用:市场营销、监管报送、风险管控、资管投研
开源和国产化数据库逐步应用到金融核心系统,非关系数据库比重将提升
数据库向着分布式、多元化、内存化发展,内存数据库、时序数据库、图数据库等菲关系型数据库比重提升
隐私增强技术(PETs)助理数据资产走向联邦化
隐私增强技术有助于数据价值挖掘,同时保持数据的安全、机密和隐私,使金融行业数据的要素化、服务化成为可能。但是“数据资产”的隐私边界界定、格式规则的统一、数据定价、质量评估仍存在很多不确定性。
现存问题:部署和管理隐私增强计算需要相关能力和专业知识;数据和规则需要统一规范;数据定价和质量评估的挑战;监管的不确定性
“数据中心”向“数据平台”演变,数据平台更多是中介角色,提供数因此,据可信交互的技术和规则,以及质量评估、定价、交易等增值服务。数据提供方将以服务方式提供数据使用,多个数据提供方组成一种虚拟的完整数据,并通过计算规则将计算结果可靠推送给使用方,形成一种新的数据可信流通商业生态。
应用场景:联合风控、KYC、精准营销
智能
AI算法呈现工程化、多模态、低资源、小数据的趋势加速金融“数智化”迈上新台阶
根据《中国证券业发展报告》数据,共81家证券公司开展了人工智能应用,涉及案例292个,应用范覆盖八大业务领域,主要占比最高三项为经纪业务 (约占36.99%) 、系统运维 (约15.41%) 、运营决策 (约占13.36%) 等,其中应用需要多模态、低资源、小数据支持的场景包括: 智能投研、智能问答 (包括智能客服智能外呼、智能IVR等) 、智能运营等,可代替人工完成重复、规则、繁琐、流程化、低附加值的工作,帮助金融机构推动数智化、流程再造等。
应用场景:智能投研、智能问答、智能运营、智能风险预警
RPA与AI技术的结合扩大数字化运营的场景,“数字员工”将在金融机构大量上岗
应用场景:财务处理(RPA+OCR自动扫描处理)、运维处理、自动批处理
智能投研的发展需要一核三体:产业链知识图谱核心技术+投研一体化、数据一体化、供需一体化
应用场景:事件预警、搜读算写
AIOps将以动优化的洞察策略提升金融机构运维工作的深度和广度
应用场景:告警泛滥、指标恶化、补救措施
效率
企业级应用将普遍基于云原生平台完成重构
总的来说,云原生最终可以给金融机构应用带来的价值包括:
1,云原生平台中运维的关注点由传统的资源为中心转向以应用为中心,以支撑应用快速创新所需的灰度发布验证、统一观测运维、提升应用自运维能力等目标
2.云原生将与业务无关的运行、监控、流量管控等通用能力下沉到平台侧,基于统一化标准化平台化的方式实现异构应用的统一治理;
3.云原生平台推动基础设施及技术组件服务化,统一的底座平台使得应用在云边端等不同位置使用一致的标准化基础服务。
以应用为中心的云原生企业架构涉及到服务网格、容器平台、多云适配、边缘云计算、无服务器计算Serverless等多个技术点。未来两年内,云原生架构、云原生平台将被大规模采用,多云混合、边缘云计算、服务网格等或将在五年内被大规模采用。
应用场景:应用微服务改造、应用容器化部署、异构服务治理、devops协作
高性能低延时需要软硬结合,向FPGA、DPU、非易失性内存等硬件要潜力
应用场景:智能业务路由、智能风控、统一接口(各种接入协议统一转换)、数据中心(高速加密和解压)
低代码平台将成为快速创新的企业级开发平台
低代码平台具备的关键功能主要包含: 软件开发生命周期 (SDLC) 、用户体验设计、开发生产力、业务逻辑和工作流 、集成和API、平台生态系统、治理、安全和服务质量。低代码平台在企业落地有多种表现形式,根据当前对低代码平台的划分来看大致分为四种:
公民自动化和开发平台 (CADP)信息填报、简单分析等场景
业务流程自动化 (BPA)清结算场景
多终端开发平台 (MDXP)用户调查场景
低代码应用开发平台 (LCDP)增删改查管理类、流程审批类场景
多重体验、可组合业务将成为数字化体验的基础
应用场景:面向投资个人服务的终端;面向内部员工服务的终端;面向机构客户服务的终端
安全
数据安全成为信息安全体系的核心,机构将通过安全运营体系保障数据资产安全合规
应用场景:1.用户隐私数据安全合规场景;2。机构内部数据安全治理
措施:
1.数据安全治理应以机构业务风险分析出发,对各个业务数据进行有效识别、分类和管理,并制定业务数据的机密性、完整性、可用性安全策略,做好数据分级分类、加密保护、数据脱敏、防泄漏工作。
2.建立统一的数据治理平台,采用多种安全工具来支撑安全策略的实施,如:防泄露 (DLP) 、身份识别和访问管理 (IAM) 等。
3.数据安全治理应针对业务数据全生命周期过程进行业务影响分析 (BIA) ,识别各种数据隐私和数据保护风险,以降低整体的业务风险。
4.数据安全治理,除了建立包含组织建设、制度流程、技术工具、人员能力等层面的数据安全治理体系外,应积极通过引入本地化差分技术、知识图谱、敏感数据智能识别、风险感知与控制、UEBA等前沿技术,不断提升数据安全建设的水平。
零信任将成为未来金融系统最佳安全防护方式
零信任的核心思想是: 默认情况下,企业内外部的任何人、事、物均不可信,应在授权前对任何试图接入网络和访问网络资源的人、事、物进行验证。以“从不信任,始终验证”的基本原则,将身份作为访问控制的基础,以最小权限原则通过实时计算确定访问控制策略,从而进行资源受控的安全访问,最终实现持续的、动态的信任评估。当前零信任架构发展出了软件定义边界 (SDP) 、增强身份管理(IAM) 和微隔离 (MSG) 三大核心技术,简称“SIM”。
典型场景
在远程办公、三方接入、大数据中心、云计算平台等典型场景中,零信任架构有多种灵活的实现方式和部署模式。
机构IT规划建议
金融机构在建设零信任安全架构时,可以按照访问主体和资源之间的关系进行建设:
1.基于所有的通信都是安全的,而且安全与网络位置无关的原则,数据访问可以重点考虑采用便于和被保护资源相结合的部署模式,如“设备代理/网关”模式、“资源门户”模式、“设备应用沙箱”模式等,搭建安全的访问通道。
2.基于用户认证是动态的,并且在允许访问前严格执行的原则,系统访问控制可以由统一的引擎负责指挥,按照“先认证后连接”原则,建立、维持有效链接实现对资源的安全访问控制。
愈加复杂的软件生态正加剧供应链安全风险,开源技术正成为信息安全防护的重点目标
典型场景
供应链安全风险在软件开发过程中应尽可能避免、消除软件的安全缺陷,从软件生命周期的源头保障软件供应链安全,同时建立长效的应急保障体系,持续监控安全风险并将风险及时消除。
体系构建阶段: 在软件研发流程中引入SDLC/DevSecOps,让安全内置到整个软件研发生命周期中。建立有效风险管理流程,在引入开源技术或供应商系统时应具备相应准入机制,并定期开展安全评估。
需求设计阶段:对应技术需要,引入的三方软件/组件 (包括免费、开源、商需要进行风险评估,提前杜绝掉存在安全和合规风险的三方软件被引入。用
编码集成阶段: 构建详细的软件物料清单,结合基于SCA、IAST等技术的工具,进行软件成分的分析,识别出安全风险和合规风险。
发布运营阶段:建立成熟的应急响应机制,基于威胁情报和态势感知等手段做到及时有效地预警和处置三方软件安全风险。同时构建完善的运营保障工具链如:周期性的巡检代码仓库、制品库。
机构IT规划建议
金融在信息化建设中,软件供应链安全风险防范至关重要。从供应链安全的不同角度的风险分析,有针对性地采用多种方法或技术手段,将其贯穿软件开发的整个生命周期,从而确保软件供应链安全。
1.管理层面:确立明确的责任主体,将工作和责任具体落实到人;对三方技术(开源/商用)使用生命周期中涉及的各类角色的职责进行明确,具体包括技管、架构、开发、配管、安全、法务等角色,建立相关管理流程和制度,统筹规划和推动;定期组织对三方技术进行安全评估和审查。
2。技术层面: 尽早采用专业工具对代码进行安全审查,有效识别和管理开源软件风险;修复已知漏洞,及时更新安全补丁。
未来
关于未来,不只人工智能、大数据、云计算等前沿技术会带来惊喜,量子计算、VR、物联网等技术也将为金融科技带来更大的想象,为金融业务赋能与服务创新带来启迪。
VR将会带来投资理财终端交互体验的技术变革
量子计算技术将倒逼金融安全算法增强
典型场景
投资组合优化:使用量子振幅估计相关的算法来实现双对数级别的量子加速从而可以加速使用蒙特卡罗法,获得一个高置信度的价格估计,一方面有助于得出最优的交易轨迹,以确定多个变量在一段时间内对投资组合表现的潜在影响,针对多种不同投资策略进行优化配置,从而达到收益最大化,另一方面通过定义算法来处理金融交易标的买入和卖出,从而通过双边交易来达到金融标的套利。定价上,例如本源量子提供的“量子期权定价算法”,与“量子风险价值 (VaR) 计量算法”,在相关参数下的期权定价波动率以及风险价值的正太分布波动率均明显小于国外常用的经典蒙特卡罗方法模拟,从而使金融标的的价格发现更加趋于市场实际价值;模拟上,可以使用量子计算为负责的金融财务风险提供分析与优化方案,从而降低金融财务风险发生的概率,针对金融市场不同参与主体的信用关系进行优化计算,更加精准地对金融主体进行金融信用评分。
量子金融安全类:目前主流的金融安全算法设计在一定算力下,需要相当长的耗时才能破解,当量子计算能力相比传统经典计算能力有指数级的提升后,传统的金融安全算法在量子计算下便显得不堪一击。针对这种降维算法破解的场景,金融安全类也可提供量子安全算法,从而应对未来可能的量子计算安全破解。
金融交易类:主要存在于量化交易与高频极速交易,量子计算的高性能低延迟计算特性可以为程序化量化交易与高频极速交易提供极速的交易申报、从而充分利用市场的价格波动来提交金融产品可能获得的收益。
为提升金融风险防范能力,将引入更多物联网数据处理技术
以上部分信息来源网络,如存在侵权问题,请联系作者进行删除