H2O学习笔记(二)——H2O Flow

H2O Flow运行深度学习算法demo

(一)启动H2O

java -jar h2o.jar -flow_dir /[ENTER_PATH_TO_FLOW_DIRECTORY_HERE]
   
   
  • 1
  • 1

-flow_dir 参数是为了指定flow在本地磁盘保存的位置。H2O有两种类型的参数

  • JVM arguments
  • H2O arguments

在浏览器打开http://localhost:54321,这就是H2O Flow的Web UI

(二)加载数据

这里使用MNIST数据集 
这里写图片描述

这里写图片描述

整个数据集大致如下: 
这里写图片描述

(三)解析数据

找到C785列数据,将Numeric类型改成Enum,作为response变量。

这里写图片描述

(四)建立模型

模型选择Deep Learning,然后设置它的一些参数

这里写图片描述

一些参数的意义:

Activation:这里选取了Tanh函数,可以用Gird搜索最佳Activation函数,目前H2O支持的Activation函数如下: 
这里写图片描述 
hidden:设置隐层的大小 
epochs:数据集迭代的次数,可以是分数 
nfolds: 交叉验证的次数 
response_column: 响应变量

(五)结果

这里写图片描述

保存模型到本地

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值