统计决策方法

2.1 引言

  • 假定要对一角或者五角的硬币进行分类,在未对样本进行观测的情况下,人们一般会选择先验概率较大的决策规则,即
    如果 P ( ω 1 ) > P ( ω 2 ) , 则 x ∈ ω 1 ; 反之,则 ∈ ω 2 ( 2 − 1 ) 如果P(\omega_1) > P(\omega_2),则x\isin\omega_1;反之,则\isin\omega_2\quad(2-1) 如果P(ω1)>P(ω2),xω1;反之,则ω221
    在二分类的情况下, P ( ω 1 ) + P ( ω 2 ) = 1 P(\omega_1)+P(\omega_2) = 1 P(ω1)+P(ω2)=1
    如果决策 x ∈ ω 1 x\isin\omega_1 xω1,错误率(决策错误的概率):
    P ( e r r o r ) = 1 − P ( ω 1 ) = P ( ω 2 ) P(error)=1-P(\omega_1)=P(\omega_2) P(error)=1P(ω1)=P(ω2)
    式(2-1)即为最小错误率准则
  • 假定仍然不允许看硬币,但是允许你用天平来称量硬币的重量,并根据重量来做决策。即已知这枚硬币重量为 x x x的情况下硬币属于各类的概率,分别记为 P ( ω 1 ∣ x ) P(\omega_1|x) P(ω1x) P ( ω 2 ∣ x ) P(\omega_2|x) P(ω2x),这种概率称作后验概率。此时的决策规则为
    如果 P ( ω 1 ∣ x ) > P ( ω 2 ∣ x ) , 则 x ∈ ω 1 ; 反之,则 x ∈ ω 2 ( 2 − 2 ) 如果P(\omega_1|x)>P(\omega_2|x),则x\isin\omega_1;反之,则x\isin\omega_2\quad(2-2) 如果P(ω1x)>P(ω2x),xω1;反之,则xω2(22)
    如果决策 x ∈ ω 1 x\isin\omega_1 xω1,错误率:
    P ( e r r o r ) = 1 − P ( ω 1 ∣ x ) = P ( ω 2 ∣ x ) P(error)=1-P(\omega_1|x)=P(\omega_2|x) P(error)=1P(ω1x)=P(ω2x)
    式(2-2)仍为最小错误率决策。
    根据贝叶斯公式:
    P ( ω i ∣ x ) = p ( x , ω i ) p ( x ) = p ( x ∣ ω i ) P ( ω i ) p ( x ) , i = 1 , 2 ( 2 − 3 ) P(\omega_i|x) = \dfrac{p(x,\omega_i)}{p(x)} = \dfrac{p(x|\omega_i)P(\omega_i)}{p(x)}, i= 1,2\quad(2-3) P(ωix)=p(x)p(x,ωi)=p(x)p(xωi)P(ωi),i=1,2(23)
    式(2-3)中分母部分相等,因此只需要比较分子上的两项即可,即
    如果 p ( x ∣ ω 1 ) P ( ω 1 ) > p ( x ∣ ω 2 ) P ( ω 2 ) , 则 x ∈ ω 1 ; 反之,则 x ∈ ω 2 ( 2 − 4 ) 如果 p(x|\omega_1)P(\omega_1)>p(x|\omega_2)P(\omega_2),则x\isin\omega_1;反之,则x\isin\omega_2\quad(2-4) 如果p(xω1)P(ω1)>p(xω2)P(ω2),xω1;反之,则xω2(24)
    以上就是贝叶斯决策的基本思想。
  • 对两类问题,在样本 x x x上错误的概率为:
  • p ( e ∣ x ) = { P ( ω 2 ∣ x ) if 决策 x ∈ ω 1 P ( ω 1 ∣ x ) if 决策 x ∈ ω 2 ( 2 − 5 ) p(e|\textbf{x}) =\begin{cases} P(\omega_2|\textbf{x}) &\text{if } 决策\textbf{x}\isin\omega_1 \\ P(\omega_1|\textbf{x}) &\text{if } 决策\textbf{x}\isin\omega_2 \end{cases}\quad(2-5) p(ex)={P(ω2x)P(ω1x)if 决策xω1if 决策xω2(25)
    错误率为满足独立同分布的样本上错误概率的期望,即
    P ( e ) = ∫ P ( e ∣ x ) p ( x ) d x ( 2 − 6 ) P(e) = \int P(e|\textbf{x})p(\textbf{x})dx\quad(2-6) P(e)=P(ex)p(x)dx26

2.2 最小错误率贝叶斯决策

最小错误率贝叶斯决策是使式(2-6)最小化,即
min ⁡ P ( e ) = ∫ P ( e ∣ x ) p ( x ) d x ( 2 − 7 ) \min P(e) = \int P(e|\textbf{x})p(\textbf{x})dx\quad (2-7) minP(e)=P(ex)p(x)dx(27)
在2.1的讨论中,最小错误率贝叶斯决策可表示为:
如果 P ( ω 1 ∣ x ) ≷ P ( ω 2 ∣ x ) , 则 x ∈ { ω 1 ω 2 ( 2 − 8 ) 如果P(\omega_1|x)\gtrless P(\omega_2|x),则x\isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad (2-8) 如果P(ω1x)P(ω2x),x{ω1ω2(28)
其中后验概率用贝叶斯公式求得:
P ( ω i ∣ x ) = p ( x ∣ ω i ) P ( ω i ) p ( x ) = p ( x ∣ ω i ) P ( ω i ) ∑ j = 1 2 p ( x ∣ ω j ) P ( ω j ) , i = 1 , 2 ( 2 − 9 ) P(\omega_i|x)=\dfrac {p(x|\omega_i)P(\omega_i)} {p(x)} = \dfrac{p(x|\omega_i)P(\omega_i)} {\sum\limits_{j=1}^2 p(x|\omega_j) P(\omega_j)},\quad i=1,2\quad (2-9) P(ωix)=p(x)p(xωi)P(ωi)=j=12p(xωj)P(ωj)p(xωi)P(ωi),i=1,2(29)
等价形式

  • 若 P ( ω i ∣ x ) = max ⁡ j = 1 , 2 P ( ω j ∣ x ) , 则 x ∈ ω i ( 2 − 10 ) 若P(\omega_i|x)=\max\limits_{j=1,2}P(\omega_j|x),则x \isin \omega_i \quad (2-10) P(ωix)=j=1,2maxP(ωjx),xωi(210)
  • 若 p ( x ∣ ω i ) P ( ω i ) = max ⁡ j = 1 , 2 P ( x ∣ ω j ) P ( ω j ) , 则 x ∈ ω i ( 2 − 11 ) 若p(x|\omega_i)P(\omega_i) = \max\limits_{j=1,2}P(x|\omega_j)P(\omega_j),则x\isin \omega_i \quad (2-11) p(xωi)P(ωi)=j=1,2maxP(xωj)P(ωj),xωi(211)
  • 若 l ( x ) = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) ≷ λ = P ( ω 2 ) P ( ω 1 ) ,则 x ∈ { ω 1 ω 2 ( 2 − 12 ) 若l(x) = \dfrac{p(x|\omega_1)}{p(x|\omega_2)} \gtrless \lambda = \dfrac{P(\omega_2)}{P(\omega_1)},则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad (2-12) l(x)=p(xω2)p(xω1)λ=P(ω1)P(ω2),则x{ω1ω2(212)
  • 若 h ( x ) ≶ ln ⁡ P ( ω 1 ) P ( ω 2 ) ,则 x ∈ { ω 1 ω 2 ( 2 − 13 ) 若h(x) \lessgtr \ln\dfrac{P(\omega_1)}{P(\omega_2)},则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad (2-13) h(x)lnP(ω2)P(ω1),则x{ω1ω2(213)
    图1
    错误率:
    P ( e ) = P(e)= P(e)= ∫ − ∞ t P ( ω 2 ∣ x ) p ( x ) d x + ∫ t + ∞ P ( ω 1 ∣ x ) p ( x ) d x = ∫ − ∞ t P ( x ∣ ω 2 ) p ( ω 2 ) d x + ∫ t + ∞ P ( x ∣ ω 1 ) p ( ω 1 ) d x ( 2 − 14 ) = P ( ω 2 ) ∫ R 1 p ( x ∣ ω 2 ) d x + P ( ω 1 ) ∫ R 2 p ( x ∣ ω 1 ) d x = P ( ω 2 ) P 2 ( e ) + P ( ω 1 ) P 1 ( e ) ( 2 − 15 ) \int_{-\infty}^t P(\omega_2|x)p(x)dx+\int_t^{+\infty}P(\omega_1|x)p(x)dx \newline \qquad =\int_{-\infty}^t P(x|\omega_2) p(\omega_2) dx + \int_t^{+\infty} P(x|\omega_1) p(\omega_1) dx \quad (2-14) \newline \qquad = P(\omega_2) \int_{R_1}p(x|\omega_2)dx + P(\omega_1) \int_{R_2} p(x|\omega_1)dx \newline \qquad = P(\omega_2) P_2(e) + P(\omega_1) P_1(e) \quad (2-15) tP(ω2x)p(x)dx+t+P(ω1x)p(x)dx=tP(xω2)p(ω2)dx+t+P(xω1)p(ω1)dx(214)=P(ω2)R1p(xω2)dx+P(ω1)R2p(xω1)dx=P(ω2)P2(e)+P(ω1)P1(e)(215)
    其中
    P 1 ( e ) = ∫ R 2 p ( x ∣ ω 1 ) d x ( 2 − 16 a ) P_1(e) = \int_{R_2}p(x|\omega_1)dx \quad (2-16a) P1(e)=R2p(xω1)dx(216a)
    P 2 ( e ) = ∫ R 1 p ( x ∣ ω 2 ) d x ( 2 − 16 b ) P_2(e) = \int_{R_1}p(x|\omega_2)dx \quad (2-16b) P2(e)=R1p(xω2)dx(216b)
    多类情况下,最小错误率贝叶斯决策:
    若 P ( ω i ∣ x ) = max ⁡ j = 1 , … , c P ( ω j ∣ x ) ,则 x ∈ ω i ( 2 − 17 a ) 若P(\omega_i|x) = \max\limits_{j=1,…,c}P(\omega_j|x),则x \isin \omega_i \quad (2-17a) P(ωix)=j=1,,cmaxP(ωjx),则xωi(217a)

    p ( x ∣ ω i ) P ( ω i ) = max ⁡ j = 1 , … , c p ( x ∣ ω j ) P ( ω j ) ,则 x ∈ ω i ( 2 − 17 b ) p(x|\omega_i) P(\omega_i) = \max\limits_{j=1,…,c} p(x|\omega_j)P(\omega_j),则x \isin \omega_i \quad (2-17b) p(xωi)P(ωi)=j=1,,cmaxp(xωj)P(ωj),则xωi(217b)
    由于错分的情况很多,可以通过计算平均正确率
    P ( c ) = ∑ j = 1 c P ( x ∈ R j ∣ ω j ) P ( ω j ) = ∑ j = 1 c ∫ R j p ( x ∣ ω j ) P ( ω j ) d x ( 2 − 18 ) P(c) = \sum\limits_{j=1}^c P(x \isin R_j | \omega_j) P(\omega_j) = \sum\limits_{j=1}^c \int_{R_j} p(x|\omega_j) P(\omega_j) dx \quad (2-18) P(c)=j=1cP(xRjωj)P(ωj)=j=1cRjp(xωj)P(ωj)dx(218)
    并用
    P ( e ) = 1 − P ( c ) = 1 − ∑ j = 1 c P ( ω j ) ∫ R j p ( x ∣ ω j ) d x ( 2 − 19 ) P(e) = 1 - P(c) = 1 - \sum\limits_{j=1}^c P(\omega_j) \int_{R_j} p(x|\omega_j) dx \quad (2-19) P(e)=1P(c)=1j=1cP(ωj)Rjp(xωj)dx(219)
    计算平均错误率

2.3 最小风险贝叶斯决策

在实际问题中不同的决策可能带来不同的损失,因此常用决策表将不同决策的损失表示出来,其中 α \alpha α为决策。
λ ( α i , ω j ) , i = 1 , … … , k , j = 1 , … … , c ( 2 − 20 ) \lambda (\alpha_i , \omega_j),i=1,……,k,\quad j=1,……,c \quad (2-20) λ(αi,ωj)i=1,……,k,j=1,……,c(220)
对于某个样本 x x x,它属于各个状态的后验概率为 P ( ω j ∣ x ) , j = 1 , … , c P(\omega_j|x),j=1,…,c P(ωjx),j=1,,c,对它采取决策 α i , i = 1 , … , k \alpha_i,i=1,…,k αi,i=1,k的期望损失为:
R ( α i ∣ x ) = E [ λ ( α i , ω j ) ∣ x ] = ∑ j = 1 c λ ( α i , ω j ) P ( ω j ∣ x ) , i = 1 , … , k ( 2 − 21 ) R(\alpha_i|x)=E[\lambda(\alpha_i,\omega_j)|x] = \sum\limits_{j=1}^c \lambda(\alpha_i,\omega_j)P(\omega_j|x),i=1,…,k \quad (2-21) R(αix)=E[λ(αi,ωj)x]=j=1cλ(αi,ωj)P(ωjx),i=1,,k(221)
设有某一决策规则 α ( x ) \alpha(x) α(x),它对特征空间中所有可能的样本 x x x采取决策所造成的期望损失是
R ( α ) = ∫ R ( α ( x ) ∣ x ) p ( x ) d x ( 2 − 22 ) R(\alpha) = \int R(\alpha(x)|x) p(x) dx\quad (2-22) R(α)=R(α(x)x)p(x)dx(222)
R ( α ) R(\alpha) R(α)称作平均风险或期望风险。最小风险贝叶斯决策就是最小化这一期望风险,即
min ⁡ α R ( α ) ( 2 − 23 ) \min\limits_\alpha R(\alpha) \quad (2-23) αminR(α)(223)
将不影响结果的项去掉,化简为
若 R ( α i ∣ x ) = min ⁡ j = 1 , … , k R ( α j ∣ x ) , 则 α = α i ( 2 − 24 ) 若R(\alpha_i|x) = \min\limits_{j=1,…,k} R(\alpha_j|x),则\alpha = \alpha_i \quad (2-24) R(αix)=j=1,,kminR(αjx),α=αi(224)
计算步骤:

  1. 利用贝叶斯公式计算后验概率
    P ( ω j ∣ x ) = p ( x ∣ ω j ) P ( ω j ) ∑ i = 1 c p ( x ∣ ω i ) P ( ω i ) , j = 1 , … , c ( 2 − 25 ) P(\omega_j|x) = \dfrac{p(x|\omega_j) P(\omega_j)} {\sum\limits_{i=1}^c p(x|\omega_i) P(\omega_i)},j=1,…,c\quad (2-25) P(ωjx)=i=1cp(xωi)P(ωi)p(xωj)P(ωj)j=1,,c(225)
  2. 利用决策表,计算条件风险
    R ( α i ∣ x ) = ∑ j = 1 c λ ( α i ∣ ω j ) P ( ω j ∣ x ) , i = 1 , … , k ( 2 − 26 ) R(\alpha_i|x) = \sum\limits_{j=1}^c \lambda(\alpha_i|\omega_j) P(\omega_j|x), i = 1,…,k \quad(2-26) R(αix)=j=1cλ(αiωj)P(ωjx),i=1,,k(226)
  3. 决策:
    α = arg min ⁡ i = 1 , … , k R ( α i ∣ x ) ( 2 − 27 ) \alpha = \argmin\limits_{i=1,…,k} R(\alpha_i|x) \quad(2-27) α=i=1,,kargminR(αix)(227)
    特别的
    在二分类且没有拒绝的情况下,最小风险贝叶斯决策为:
    若 λ 11 P ( ω 1 ∣ x ) + λ 12 P ( ω 2 ∣ x ) ≶ λ 21 P ( ω 1 ∣ x ) + λ 22 P ( ω 2 ∣ x ) ,则 x ∈ { ω 1 ω 2 ( 2 − 28 ) 若\lambda_{11} P(\omega_1|x) + \lambda_{12} P(\omega_2|x) \lessgtr \lambda_{21} P(\omega_1|x) + \lambda_{22} P(\omega_2|x),则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad(2-28) λ11P(ω1x)+λ12P(ω2x)λ21P(ω1x)+λ22P(ω2x),则x{ω1ω2(228)
    等价形式
  • 若 ( λ 11 − λ 21 ) P ( ω 1 ∣ x ) ≶ ( λ 22 − λ 12 ) P ( ω 2 ∣ x ) ,则 x ∈ { ω 1 ω 2 ( 2 − 29 ) 若(\lambda_{11} - \lambda_{21}) P(\omega_1|x) \lessgtr (\lambda_{22} - \lambda_{12}) P(\omega_2|x),则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad(2-29) (λ11λ21)P(ω1x)(λ22λ12)P(ω2x),则x{ω1ω2(229)
  • 若 P ( ω 1 ∣ x ) P ( ω 2 ∣ x ) = p ( x ∣ ω 1 ) P ( ω 1 ) p ( x ∣ ω 2 ) P ( ω 2 ) ≷ λ 22 − λ 12 λ 11 − λ 21 = λ 12 − λ 22 λ 21 − λ 11 ,则 x ∈ { ω 1 ω 2 ( 2 − 30 ) 若\dfrac {P(\omega_1|x)} {P(\omega_2|x)} = \dfrac {p(x|\omega_1)P(\omega_1)} {p(x|\omega_2)P(\omega_2)} \gtrless \dfrac {\lambda_{22} - \lambda_{12}} {\lambda_{11} - \lambda_{21}} = \dfrac {\lambda_{12} - \lambda_{22}} {\lambda_{21} - \lambda_{11}},则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad(2-30) P(ω2x)P(ω1x)=p(xω2)P(ω2)p(xω1)P(ω1)λ11λ21λ22λ12=λ21λ11λ12λ22,则x{ω1ω2(230)
  • 若 l ( x ) = p ( x ∣ ω 1 ) p ( x ∣ ω 2 ) ≷ P ( ω 2 ) P ( ω 1 ) ∙ λ 12 − λ 22 λ 21 − λ 11 ,则 x ∈ { ω 1 ω 2 ( 2 − 31 ) 若l(x) = \dfrac{p(x|\omega_1)} {p(x|\omega_2)} \gtrless \dfrac {P(\omega_2)} {P(\omega_1)} \bull \dfrac {\lambda_{12}-\lambda_{22}} {\lambda_{21}-\lambda_{11}},则x \isin \begin{cases} \omega_1 \\ \omega_2 \end{cases} \quad(2-31) l(x)=p(xω2)p(xω1)P(ω1)P(ω2)λ21λ11λ12λ22,则x{ω1ω2(231)

参考
张学工. 模式识别. 第三版. 北京:清华大学出版社,2010
张学工,汪小我. 模式识别与机器学习. 第四版. 北京:清华大学出版社,2021
部分图片来源于网络

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

max_lfy99

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值