1、个性化推荐系统的推荐引擎:其实就是很简单的一个java web代码,但是响应达到毫秒级,为什么这么快?
(1)服务器分布式:请求经过5台ALB(负载均衡服务器),然后分发到40台BLU(响应服务器)进行处理
(2)服务器取数是到redis取,redis是基于内存的,所以取出来很快
2、个性化推荐中涉及到数据挖掘,机器学习那一块的,是指离线模型,准实时模型和在线模型:
根据用户的行为特征(浏览行为和指标):训练出模型:比如rfh模型:
客户uid|tfh|跟他拥有同样爱好的也浏览过这个offer|优先级1
客户uid|tfh|跟他拥有同样爱好的也浏览过这个offer|优先级2
训练模型,就是根据个推的点击日志,和TD的指标数据,利用Python进行训练,训练成一种.pmml文件
这种训练好的模型,就加载到redis,然后根据管理端设定的规则,将模型里面的offer推荐出去
3、实时标签
比如人对基金产品的偏好标签,是根据kafka里面该产品实时的浏览,点击,交易等数据,以及离线平台加工到redis的背景数据(历史浏览,点击等行为),根据各个行为设置的权重,根据公式求出这个基金产品对于这个人的得分,这个得分就可以看成一个标签。然后模型就可以根据这个产品的这些标签,结合历史数据,对这个产品进行评分
4、离线模型:离线模型推荐的产品就是根据协同过滤,规则关联等算法得到的,这个过程即召回。离线模型主要是推荐基金产品
个性化推荐系统
最新推荐文章于 2024-11-25 00:12:52 发布
本文详细介绍了个性化推荐系统的工作原理,包括分布式服务器架构、数据获取与存储、离线及在线模型训练、实时标签计算、规则设定以及推荐逻辑。重点讨论了如何利用redis、mysql、kafka和sparkstreaming进行数据处理,以及xgboost模型在在线模型训练中的应用。此外,还阐述了冷启动策略和推荐排序模型的构建。

最低0.47元/天 解锁文章
802

被折叠的 条评论
为什么被折叠?



