具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能
心音分类在心血管疾病的早期发现中起着至关重要的作用,特别是对于小型初级卫生保健诊所。尽管近年来心音分类取得了很大进展,但其中大多数都是基于传统的分段特征和基于浅层结构的分类器。这些传统的声学表示和分类方法可能不足以表征心音,并且通常由于复杂多变的心脏声学环境而导致性能下降。在本文中,我们提出了一种基于改进的梅尔频率倒谱系数(MFCC)特征和卷积递归神经网络的新心音分类方法。首先计算梅尔频率倒谱,而不除心音信号。提出了一 种基于MFCC的新改进特征提取方案来详细描述连续心音信号之间的动态特征。 最后,基于 MFCC 的特征被输入到深度卷积和循环神经网络 (CRNN),以进行特 征学习和后续的分类任务。所提出的深度学习框架可以利用从卷积神经网络 (CNN)提取的编码局部特征和循环神经网络(RNN)捕获的长期依赖性。本文 对不同网络参数和不同网络连接策略的性能进行了综合研究。与最先进的算法进 行性能比较以供讨论。实验表明,对于二类分类问题(病理性或非病理性),在 2016 PhysioNet/CinC Challenge 数据库上实现了 98% 的分类准确率。
心血管疾病仍然是导致死亡的主要原因,由于其突发性和复发性,对全球人口构成严重威胁。因此,研究心脏疾病的早期预防方法就变得重要和有意义。心音信号携带着心血管疾病的早期病理信息,已被证明是有效地早期发现潜在的心血管疾病。传统上,心音是由医学专家通过听诊检测心脏疾病。它是非侵入性的、成本低 效益高且需要最少的设备,非常适合心脏检查,特别是在小型初级卫生保健诊所。但实际上,心音听诊