基于深度学习的鸟类声音识别系统

本文聚焦鸟类声音识别,针对现有模型泛化能力差、算法复杂等问题,构建含264种鸟类的大数据集,提出轻量级识别模型。该模型以MobileNetV3为骨干,调整深度可分离卷积,设计多尺度特征融合结构与PSA模块等,实验显示其准确率高且成本低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                     具体的软硬件实现点击 MCU-AI技术网页_MCU-AI人工智能

鸟叫声识别在鸟类保护中具有重要意义。通过适当的声音分类,研究可以自动预测该地区的生活质量。如今,深度学习模型被用于对鸟类声音数据进行高精度的分类。然而,现有的大多数鸟类声音识别模型的泛化能力较差,并且采用复杂的算法来提取鸟类声音特征。为了解决这些问题,本文构建了一个包含264种鸟类的大数据集,以增强模型的泛化能力,然后提出了一个轻量级的鸟类声音识别模型,以MobileNetV3为骨干构建了一种轻量级的特征提取和识别网络。通过调整模型中的深度可分离卷积,提高了模型的识别能力。设计了一种多尺度特征融合结构,并在该结构中加入了金字塔分割注意力(PSA)模块,以提高网络对空间信息和通道信息的尺度提取的适应性。为了提高模型对全局信息的细化能力,在Bneck模块中引入了通道注意机制和普通卷积,使Bneck模型成为Bneck模。实验结果表明,该模型的Top-1和Top-5在自建数据集上识别264种鸟类的准确率分别为95.12%和100%,高于MobileNetV1、MobileNetV2和MobileNetV3。尽管精度低于ResNet50,但该模型的参数数量和浮点运算(FLOP)数量分别只有2.6M和127M。精度仅降低2.25%,同时节省了成本。

image.png

从未受破坏的热带雨林到郊区甚至城市,几乎每种环境中都有超过10000种鸟类[1],[2]。如今,世界各地的鸟类都不同程度地灭绝了。例如,夏威夷作为世界灭绝之都,已经失去了68%的鸟类,这可能会破坏整个食物链,从而破坏夏威夷的生态环境。通过种群监测,研究人员可以了解当地鸟类对环境变化和保护工作的反应。能够实时监测鸟类的运动是这项工作的第一步[3]。

目前,许多专业人士开始长时间观察鸟类,以保护其物种[4]。然而,大多数监控任务都是由专业人员手动完成的。由于鸟类飞行速度快,难以观察,而且当它们生活在陆地上时,它们很容易被人类活动吓到,无法被相机快速记录下来。因此,使用图像识别来实时识别鸟类既困难又昂贵[5]。更重要的是,许多鸟类被隔离在人迹罕至的高海拔栖息地。由于物理监测的困难,越来越多的专业人员通常通过听觉[6]和记录来识别鸟类。这种被称为生物声学监测的方法可以为濒危鸟类种群的研究提供一种被动且具有成本效益的策略。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值