一、选题来源及意义
(一)选题来源
改革开放以来,中国经济取得了举世瞩目的伟大成就。随着城市化进程的加快和工业发展的加速,空气污染问题已经成为影响我国城市居民生活质量的重要因素。但与此同时,以高能耗和高排放为代价的发展模式也给中国的环境治理带来了严峻挑战[1]。空气污染不仅对环境造成破坏,还对人类健康产生严重影响[2]。给人们的生产生活带来极大的困扰。现阶段,我国城市高度重视环境污染治理工作,并采取相关措施完善环境污染监测标准,加强对各类污染物的监测力度[3]。广州市作为我国南方的重要城市,其空气质量状况对周边地区的影响巨大,因此对空气污染情况进行预测和可视化具有重要意义。近年来,长短期记忆网络(LSTM)作为一种深度学习技术,在时间序列预测领域取得了显著的成果。因此,本文将基于LSTM模型,设计并实现一个空气污染情况预测与可视化平台,以为空气污染治理提供科学依据和技术支持。
- 选题意义
随着工业化和城市化的快速发展,空气污染问题日益严重,成为影响城市可持续发展和居民生活质量的重要因素。空气污染已经成为危害人类健康的“隐形杀手”,不但严重威胁人们的身体健康,也对心理健康产生巨大负面影响[4]。因此对空气污染情况进行预测和可视化具有重要意义[5]。然而,空气污染物浓