内容概要:
本文介绍了一个基于 Flask 框架和 scikit-learn 的二手房可视化分析与预测系统。系统通过数据爬取、处理和存储,实现了房价预测和市场分析功能。前端使用 HTML、CSS 和 JavaScript,结合 Bootstrap 和 Echarts 实现了数据可视化展示。通过随机森林算法,系统能够准确预测房价,为购房者提供决策支持。
适合人群:房地产从业者、数据分析师、机器学习爱好者和科研人员。
使用场景及目标:帮助购房者、投资者和房产开发商准确了解陕西地区的二手房市场价格走势和预测未来的房价,降低购房风险,提高购房满意度。
其他说明:该系统不仅提供房价预测功能,还涵盖了二手房信息展示、价格分析、面积分析、户型分析和地区分析等多个方面的数据可视化功能,为用户提供全方位的市场信息支持。同时,系统的设计思路和技术实现方法具有通用性和可复制性,可以推广到其他地区的二手房市场分析。
项目详细介绍
项目运行视频:(B站视频)
【S2023031基于机器学习的陕西省二手房房价预测系统+大屏可视化展示】 https://www.bilibili.com/video/BV1mx4y1j7iJ/?share_source=copy_web&vd_source=3d18b0a7b9486f50fe7f4dea4c24e2a4
(包含毕设全套内容)
项目源码
论文
运行效果视频、部署参考教学视频
论文概览
结构合理,内容清晰,字数近 1 w
以下是该项目的论文部分内容及相关截图
二手房可视化分析和预测
摘 要
陕西地区二手房市场日益活跃,购房者需要准确的市场数据和房价预测来指导购房决策。然而,目前市场上缺乏直观、准确的数据分析工具,购房者往往难以了解市场走势和未来趋势,因此需要一款集数据分析与预测功能于一体的系统。
本系统利用 Flask 框架构建 Web 应用,通过 requests 和 BeautifulSoup 模块从网络上抓取二手房数据,再利用 pandas 进行数据处理与分析,将数据存储到 SQLite 数据库中,并利用 flask_sqlalchemy 模块进行 ORM 映射。前端界面使用 HTML、CSS 和 JavaScript 实现,采用 Bootstrap 框架美化页面,并利用 Echarts 绘制交互式数据可视化图表。同时,利用 scikit-learn 实现随机森林预测算法,对未来房价进行预测。实现的功能有数据抓取、数据分析、数据可视化、房价预测。
本系统解决了购房者难以获取准确、直观的陕西地区二手房市场数据和房价预测的问题。通过数据抓取、分析