研究背景: 随着互联网的发展,传统的二手房交易逐渐向线上平台转移,用户对于房产选择的需求也变得更加个性化。为了帮助用户根据个人需求快速筛选合适的房源,本课题将设计并实现一个基于Python和Flask框架的二手房推荐系统。该系统将结合数据爬取、用户评分、推荐算法以及可视化技术,为用户提供精准的房产推荐。
研究目的: 本课题旨在通过构建一个基于用户历史行为的房产推荐系统,利用Flask框架搭建后端服务,并实现房源数据的可视化展示。系统通过以下功能模块实现:
- 数据抓取:通过爬虫技术抓取二手房数据。
- 数据存储:使用SQLite数据库存储抓取的房源信息和用户数据。
- 推荐算法:基于用户历史评分,计算房产之间的相似度,进行个性化推荐。
- 可视化展示:使用Flask渲染页面,展示推荐结果和房源信息。
研究内容:
- 数据抓取与存储:实现爬虫程序,抓取二手房数据,并存储到数据库中。
- 房产推荐算法:采用倒排索引和相似度计算方法,通过用户的历史评分为其推荐房产。
- 系统后端设计:使用Flask框架设计后端服务,提供API接口,支持前端页面请求。
- 前端可视化展示:使用HTML、CSS和JavaScript实现数据的可视化展示,向用户提供交互式界面。
技术路线:
- 使用Python的