Classify handwritten digits using the famous MNIST data
This competition is the first in a series of tutorial competitions designed to introduce people to Machine Learning.
The goal in this competition is to take an image of a handwritten single digit, and determine what that digit is. As the competition progresses, we will release tutorials which explain different machine learning algorithms and help you to get started.
The data for this competition were taken from the MNIST dataset. The MNIST ("Modified National Institute of Standards and Technology") dataset is a classic within the Machine Learning community that has been extensively studied. More detail about the dataset, including Machine Learning algorithms that have been tried on it and their levels of success, can be found at http://yann.lecun.com/exdb/mnist/index.html.
题目链接:http://www.kaggle.com/c/digit-recognizer
手写体的数字识别
数据描述:http://www.kaggle.com/c/digit-recognizer/data
每张图片长宽分别是28个像素,每个像素用一个数字表示(介于0~255),所以每一张图片用28×28个数字来表示。训练数据包含一列label和784列像素值。测试数据没有label列。目的:对训练数据进行训练,得出模型,预测测试数据的label值。
下面将图片由像素值还原为实际的图片,使用ipython notebook:
pwd

这篇博客介绍了如何使用MNIST数据集进行手写数字识别,作为Kaggle上的入门级机器学习竞赛。通过这个比赛,参与者可以学习到不同的机器学习算法。数据来源于著名的MNIST数据库,并提供了训练和测试数据。文章中提到了使用随机森林进行模型训练和预测的方法。
最低0.47元/天 解锁文章
266

被折叠的 条评论
为什么被折叠?



