概率统计第一章打卡学习

随机事件

1.1 基本概念

随机现象
对事件得结果不能完全预测得现象,称之为随机现象
随机试验
观察随机现象实现得过程,称为随机试验。记为E

条件:
1 可以在相同条件下重复进行
2 结果有多种可能性,并且所有可能的结果事先已知
3 作一次试验究竟哪个结果出现,事先不能确定
**
样本空间**
包含随机实验中所有可能的集合为样本空间,记为 Ω \Omega Ω

样本点
实验的每一可能结果称为样本点,记为 ω \omega ω

随机事件
在样本空间中满足一定条件的子集为随机事件,用大写字母 A,B,B

note: 随机事件在随机实验中可能出现也可能不出现

必然事件
在试验中,称一个事件发生是指构成该事件的一个样本点出现,由于样本空间 Ω \Omega Ω包含所有样本点,所以在每次实验中,它总发生,因此称 Ω \Omega Ω为必然事件

不肯能事件
空集 ϕ \phi ϕ不包含任何样本点,且在每次实验中总部发生

理解
其实这里的一些基本概念 可以理解为一个集合
1 全集为样本空间,其中每一个元素都代表个样本点,而全集和子集的关系,就是随机事件发生的概率问题,全集因为包含所有的样本点,所以它一定是可能发生,空集则相反,他与任何子集的交集都是空集,所以一定是不可能发生的称为不可能事件

1.2 概率

1 定义
在随机实验中,每个随机事件的发生在整个样本空间中都有对应的实数P(A)与之相对应

理解
我一直的看法就是 概率其实就是每个随机事件在整个样本空间中所占的比例,也就是子集子集在全集中所占的比例

特点
1 对于每个事件 A A A,均有 0 < P ⟨ A ⟩ < = 1 0<P\langle A \rangle<=1 0<PA<=1
2 P ⟨ Ω ⟩ = 1 P\langle\Omega\rangle=1 PΩ=1
3 若事件 A 1 , A 2 , A 3 A_1,A_2,A_3 A1,A2,A3两两互斥,(互斥的意思是在整个样本空间中任意两个互斥事件不可能同时发生,也就是说 任意两个子集之间没有交集)
则有 P ⟨ A 1 ⋂ A 2 ⋂ A 3 ⟩ = P ⟨ A 1 ⟩ + P ⟨ A 2 ⟩ . . . . . P\langle A_1 \bigcap A_2 \bigcap A_3\rangle= P\langle A_1 \rangle+P\langle A_2 \rangle..... PA1A2A3=PA1+PA2.....

主要性质
1 对于任一事件A,均有 P ⟨ A ˉ ⟩ = 1 − P ⟨ A ⟩ P\langle \bar{A} \rangle =1-P\langle A \rangle PAˉ=1PA

2 若事件A B 是包含的关系,即A ⊂ \sub B,则有

P ⟨ B − A ) = P ( B ) − P ( A ) , P ( B ) > P ( A ) P\langle B-A) =P(B)-P(A),P(B)>P(A) PBA)=P(B)P(A),P(B)>P(A)
1 对于任意两个事件A和B,有
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A \cup B ) = P(A)+P(B)-P(A \cap B) P(AB)=P(A)+P(B)P(AB)

1.3 古典概型

古典概型的特点在于
1 样本空间有限
2 每个样本点出现是等可能的,且每次实验有且仅有一个样本点发生

公式 这里定义事件A 它包含了m个样本点 则事件A出现的概率为:
P ( A ) = m n ( n 为 事 件 所 有 样 本 点 ) ) P(A) = \frac m n(n为事件所有样本点) ) P(A)=nmn)

古典概型的推广
在学习中主要涉及到的是古典概型中的排列组合问题,但在实际的应用中可能结果打出人们所意料的,比如资料中所提及的生日问题

#递归方程
def recursion(n)
	if n== 0:
		return 1;
	else
		return (n*recursion(n-1))
		
l_fac = recursion(365)
l_k_fac = recursion(365 - 40)
l_k_exp = 365**40  #365的40次方

p_B = l_fac/(l_k_fac * l_k_exp)
print("事件B的概率为:",p_B)
print("40个同学中至少两个人同一天过生日的概率是:"1-p_B)

1.4 条件概率

1 定义
设A和B是两个事件,且 P ( B ) > 0 P(B)>0 P(B)>0, 称为 P ( A ∣ B ) = P ( A B ) P ( A ) P(A|B)=\frac {P(AB)} {P(A)} P(AB)=P(A)P(AB) 为在事件B发生的条件下,事件A发生的概率

全概率公式和贝叶斯公式

1 概率乘法公式:
P ( A B ) = P ( B ∣ A ) P ( A ) = P ( A ∣ B ) P ( B ) P(AB)= P(B|A)P(A)=P(A|B)P(B) P(AB)=P(BA)P(A)=P(AB)P(B)

2事件组,满足
1 B 1 , B 2 , . . . . . . B_1,B_2,...... B1,B2,......两两互斥,即 B i ∩ B j = ϕ i 和 j 不 相 等 , B_i \cap B_j = \phi i和j不相等, BiBj=ϕij P ( B i ) > 0 P(B_i)>0 P(Bi)>0
2 B i ∪ B 2 . . . . = Ω B_i \cup B_2 .... = \Omega BiB2....=Ω
则称事件组 B 1 B 2 . . . . . . . . B_1 B_2........ B1B2........是样本空间 Ω \Omega Ω的一个划分

全概率公式
B 1 , B 2 B_1 ,B_2 B1,B2是样本空间 Ω \Omega Ω的一个划分,A为任意事件,则 P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A)=\textstyle\sum_{i=1}^\infty P(B_i)P(A|B_i) P(A)=i=1P(Bi)P(ABi)

2贝叶斯公式
B 1 B 2 . . . . . . . . B_1 B_2 ........ B1B2........是样本空间 Ω \Omega Ω的一个划分,则对任一事件 A ( P ( A ) > 0 ) A(P(A)>0) A(P(A)>0)
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(B_i|A)= \frac {P(B_iA)} {P(A)}=\frac {P(B_i)P(A|B_i)} {\textstyle\sum_{i=1}^\infty P(B_i)P(A|B_i)} P(BiA)=P(A)P(BiA)=i=1P(Bi)P(ABi)P(Bi)P(ABi)
上述称为贝叶斯公式
P ( B i ) 为 先 验 概 率 , P ( B i ∣ A ) 为 后 验 概 率 P(B_i)为先验概率,P(B_i|A)为后验概率 P(Bi)P(BiA)
理解
在资料的理解中它给出了一个阳性条件下为肝癌的机率,这就意味着,如果使用条件概率,就是阳性患者还是肝癌的概率/阳性患者 但有的时候阳性患者的概率 未知时候,则可根据贝叶斯公式,求解阳性条件下是肝癌的加上阳性条件下不是肝癌的,这样就得到了阳性患者的概率。

随机变量

2.1 随机变量及其分布
随机变量
这里描述的是在随机试验 E E E,在样本空间中 Ω \Omega Ω,每 ω \omega ω都在实数域上有对应的值 X ( ω ) X(\omega) X(ω)与之对应,那么这个 X ( ω ) 就 是 我 们 需 要 关 注 的 值 X(\omega)就是我们需要关注的值 X(ω)
注意
随机变量的取值并不是固定的,这区别与普通的函数,每个样本点随对应的随机变量的取值也是不确定的。我们关心随机变量,往往关心它的取值的概率,而不是他去那些值
分布函数

分布函数的定义:
分布函数的公式如下所示,设随机变量X,对于任意的x都有
F ( x ) = P ( X < = x ) ( − ∞ < x < + ∞ ) F(x)=P(X<=x) (-\infty<x<+\infty) F(x)=P(X<=x)(<x<+)
我们管这样的函数叫做分布函数,也叫做概率累加函数

2.2 离散型随机变量

如果随机变量 X X X的全部x的取值为可列无穷多个。X称为离散型随机变量,,那么其对应的概率为
P ( X = x k ) = p k k = 1 , 2 , 3 , 4........ P(X=x_k)=p_k k=1 ,2, 3, 4........ P(X=xk)=pkk=1,2,3,4........
其对应的分布函数为
F ( X ) = ∑ k = 1 X = x k p k F(X)=\displaystyle\sum_{k=1}^{X=x_k}p_k F(X)=k=1X=xkpk
这样部门管这个叫做离散函数的分布律

2.3 常见的离散分布
2.3.1 伯努利实验和二项式分布
定义
如果一个实验只有两种结果,我们则管这样的分布叫做伯努利分布,其公式如下所示
P ( X ) = p         P ( X ˉ ) = 1 − p P(X)=p \ \ \ \ \ \ \ P(\bar X)=1-p P(X)=p       P(Xˉ)=1p
其 中          0 < p < 1 其中 \ \ \ \ \ \ \ \ 0<p<1         0<p<1
如果像这样的实验可重复n次进行,则叫做n重伯努利分布

伯努利分布中有一个重要的分布叫做二项式分布,
其中二项式分布,表示在n此实验中 正事件所发生的概率
其公式为
P ( x = k ) = C n k p k ( 1 − p ) n − k k = 01234 P(x=k)=C_n^kp^k(1-p)^{n-k} k= 0 1 2 3 4 P(x=k)=Cnkpk(1p)nkk=01234
*记作B(n, k)表示的是n次实验中k次发生的概率为k的概率是多少。

其分布函数为
F ( x ) = ∑ k ∣ x ∣ C n k p k ( 1 − p ) n − k F(x)=\displaystyle\sum_k^{|x|}C_n^kp^k(1-p)^{n-k} F(x)=kxCnkpk(1p)nk
这 里 需 要 注 意 的 是 意 思 就 是 如 果 想 知 道 有 三 次 成 功 的 概 率 则 需 要 将 0 次 1 次 2 次 3 次 的 概 率 加 在 一 起 就 是 这 个 概 率 分 布 的 意 思 这里需要注意的是 意思就是 如果想知道有三次成功的概率 则需要 将 0次 1次 2次 3次 的概率加在一起就是这个概率分布的意思 0123

随机变量的数字特征
2.4.1 数学期望
离散型
E ( x ) = ∑ k = 1 x k x k p k ) E(x)=\displaystyle\sum_{k=1}^{x_k}x_kp_k) E(x)=k=1xkxkpk) 这 里 ∑ k = 1 x k x k p k 是 收 敛 的 这里\displaystyle\sum_{k=1}^{x_k}x_kp_k是收敛的 k=1xkxkpk
对于连续性
E ( x ) = ∫ − ∞ + ∞ x f ( x ) E(x)=\int_{-\infty}^{+\infty}xf(x) E(x)=+xf(x) 其 中 f ( x ) 被 称 为 概 率 密 度 函 数 其中f(x)被称为概率密度函数 f(x)
这个数学期望也被称为均值

性质
1 若c为一个常数,则 E ( c ) = c E(c)=c E(c)=c
2 E ( a X + b Y ) = a E ( X ) + b B ( Y ) E(aX+bY)=aE(X)+bB(Y) E(aX+bY)=aE(X)+bB(Y)
3 X Y独立则有 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)

2.4.2 方差
v a r ( x ) = E ( ( X − E ( x ) 2 ) ) var(x)=E((X-E(x)^2)) var(x)=E((XE(x)2))
v a r ( x ) 叫 做 均 方 差 \sqrt{var(x)}叫做均方差 var(x)

性质
1 若C为常数 ,则 v a r ( c ) = 0 var(c)=0 var(c)=0
2 v a r ( c X + b ) = c 2 E ( X ) var(cX+b)=c^2E(X) var(cX+b)=c2E(X)
3 若X Y独立
v a r ( X = Y ) = v a r ( X ) + v a r ( y ) var(X=Y)=var(X)+var(y) var(X=Y)=var(X)+var(y)

协方差和相关系数
协方
c o v ( X , Y ) = E ( ( X − E ( x ) ∣ Y − E ( Y ) ) cov(X,Y)=E((X-E(x)|Y-E(Y)) cov(X,Y)=E((XE(x)YE(Y))

性质
1 c o v ( X , Y ) = c o v ( Y , X ) 1 cov(X,Y)=cov(Y,X) 1cov(X,Y)=cov(Y,X)
2 c o v ( a x + b , b x + c ) = a b c o v ( x , y )     a   b   c   d 为 任 意 常 数 2 cov(ax+b,bx+c)=abcov(x,y )\ \ \ a \ b\ c\ d为任意常数 2cov(ax+b,bx+c)=abcov(x,y)   a b c d
3 c o v ( X 1 + X 2 , Y ) = c o v ( X 1 , Y ) + c o v ( X 2 , Y ) 3 cov(X_1+X_2,Y)=cov(X_1,Y)+cov(X_2,Y) 3cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y)
4 c o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y      X     Y 相 互 独 立 4 cov(X,Y)=E(XY)-E(X)E(Y\ \ \ \ X\ \ \ Y相互独立 4cov(X,Y)=E(XY)E(X)E(Y    X   Y
5 ∣ c o v ( X , Y ) ∣ < = v a r ( X ) v a r ( Y ) 5 |cov(X,Y)|<=\sqrt{var(X)}\sqrt{var(Y)} 5cov(X,Y)<=var(X) var(Y)
6 c o v ( X , X = v a r ( X ) ) 6 cov(X,X=var(X)) 6cov(X,X=var(X))

相关系数

基本上我们会用相关系数来衡量两个变量之间额关系,相关系数的取值从-1到1,当小于0是则代表负相关,大于零时则代表正相关,当其绝对值越接近1是则代表相关性程度越好

公式
ρ ( x , y ) = c o v ( x , y ) v a r ( x ) v a r ( y ) \rho(x,y)=\frac {cov(x,y)} {\sqrt{var(x)}\sqrt{var(y)}} ρ(x,y)=var(x) var(y) cov(x,y)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值