1、基本概念
现实生活中,一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种,称这种现象为随机现象。使随机现象得以实现和对它观察的全过程称为随机试验。
称随机试验的所有可能结果组成的集合为样本空间。
试验的每一个可能结果称为样本点。
称样本空间中满足一定条件的子集为随机事件。另外,随机事件在随机试验中可能出现也可能不出现。
在试验中,称一个事件发生是指构成该事件的一个样本点出现。由于样本空间包含了所有的样本点,所以在每次试验中,它总是发生,因此称为必然事件。
空集不包含任何样本点,且在每次试验中总不发生,所以称为不可能事件。
2、随机事件的概率
随机事件的概率主要有以下性质:
对于任一事件A,均有P(A¯)=1−P(A)
对于两个事件A和B,若A⊂B,则有P(B−A)=P(B)−P(A),P(B)>P(A)
对于任意两个事件A和B,有P(A∪B)=P(A)+P(B)−P(A∩B)
3、古典概率(等概率发生)
我们将掷骰子游戏进行推广,设随机事件 E 的样本空间中只有有限个样本点,即 Ω={ω1,ω2,...,ωn},其中,n 为样本点的总数。每个样本点ωi(i=1,2,...,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。
例:求 k 个同班同学没有两人生日相同的概率。
Python代码实现,设 k=40
#我们采用函数的递归的方法计算阶乘:
def factorial(n):
if n == 0:
return 1;
else:
return (n*factorial(n-1))
l_fac = factorial(365); #l的阶乘
l_k_fac = factorial(365-40) #l-k的阶乘
l_k_exp = 365**40 #l的k次方
P_B = l_fac /(l_k_fac * l_k_exp) #P(B)
print("事件B的概率为:",P_B)
print("40个同学中至少两个人同一天过生日的概率是:",1 - P_B)
4 条件概率
设 A 和 B 是两个事件,且P(B)>0,称 P(A∣B)=P(AB)/P(B) 为在事件B发生的条件下,事件A发生的概率。可以得到:P(AB)=P(B∣A)P(A)=P(A∣B)P(B)
5、全概率公式和贝叶斯公式
5.1 全概率公式
设B1,B2,...是样本空间 Ω的一个划分,A 为任一事件,则
称为全概率公式。
5.2 贝叶斯公式
设B1,B2,...是样本空间 Ω的一个划分,则对任一事件 A(P(A)>0) ,有
P(Bi∣A)=P(BiA)/P(A)=P(A∣Bi)P(Bi)∑∞j=1P(Bj)P(A∣Bj),i=1,2,...
称上式为贝叶斯公式,称P(Bi)(i=1,2,...)为先验概率,P(Bi∣A)(i=1,2,...)为后验概率。