Task01 随机事件与随机变量

1、基本概念

现实生活中,一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种,称这种现象为随机现象。使随机现象得以实现和对它观察的全过程称为随机试验

称随机试验的所有可能结果组成的集合为样本空间

试验的每一个可能结果称为样本点

称样本空间中满足一定条件的子集为随机事件。另外,随机事件在随机试验中可能出现也可能不出现。

在试验中,称一个事件发生是指构成该事件的一个样本点出现。由于样本空间包含了所有的样本点,所以在每次试验中,它总是发生,因此称为必然事件

空集不包含任何样本点,且在每次试验中总不发生,所以称为不可能事件

2、随机事件的概率

随机事件的概率主要有以下性质:

对于任一事件A,均有P(A¯)=1−P(A)

对于两个事件A和B,若A⊂B,则有P(B−A)=P(B)−P(A),P(B)>P(A)

对于任意两个事件A和B,有P(A∪B)=P(A)+P(B)−P(A∩B)

3、古典概率(等概率发生)

我们将掷骰子游戏进行推广,设随机事件 E 的样本空间中只有有限个样本点,即 Ω={ω1,ω2,...,ωn},其中,n 为样本点的总数。每个样本点ωi(i=1,2,...,n)出现是等可能的,并且每次试验有且仅有一个样本点发生,则称这类现象为古典概型。

例:求 k 个同班同学没有两人生日相同的概率。

Python代码实现,设 k=40

#我们采用函数的递归的方法计算阶乘:
def factorial(n):
    if n == 0:
        return 1;
    else:
        return (n*factorial(n-1)) 
    
l_fac = factorial(365);          #l的阶乘
l_k_fac = factorial(365-40)      #l-k的阶乘
l_k_exp = 365**40                #l的k次方

P_B =  l_fac /(l_k_fac * l_k_exp)     #P(B)
print("事件B的概率为:",P_B)
print("40个同学中至少两个人同一天过生日的概率是:",1 - P_B)

4 条件概率

设 A 和 B 是两个事件,且P(B)>0,称 P(A∣B)=P(AB)/P(B) 为在事件B发生的条件下,事件A发生的概率。可以得到:P(AB)=P(B∣A)P(A)=P(A∣B)P(B)

5、全概率公式和贝叶斯公式

5.1 全概率公式

设B1,B2,...是样本空间 Ω的一个划分,A 为任一事件,则

\sum_{i=0}^{\infty }P(B_{i})P(A|B_{i})

称为全概率公式。

5.2 贝叶斯公式

设B1,B2,...是样本空间 Ω的一个划分,则对任一事件 A(P(A)>0) ,有

P(Bi∣A)=P(BiA)/P(A)=P(A∣Bi)P(Bi)∑∞j=1P(Bj)P(A∣Bj),i=1,2,...

称上式为贝叶斯公式,称P(Bi)(i=1,2,...)为先验概率,P(Bi∣A)(i=1,2,...)为后验概率。

高斯随机变量是一种常见的概率分布,也被称为正态分布。在Matlab中,可以使用randn函数生成高斯随机变量。该函数生成服从均值为0,方差为1的标准正态分布的随机数。如果需要生成具有不同均值和方差的高斯随机变量,可以使用以下公式进行变换: X = mean + std * randn 其中,mean是均值,std是标准差。通过调整mean和std的值,可以生成具有不同均值和方差的高斯随机变量。 以下是一个示例代码,用于生成均值为mu,方差为sigma的高斯随机变量: ```matlab mu = 0; % 均值 sigma = 1; % 方差 n = 10000; % 生成的随机数个数 X = mu + sigma * randn(n, 1); % 生成高斯随机变量 % 将生成的随机数保存到文件中 fileID = fopen('gaussian_random_numbers.txt', 'w'); fprintf(fileID, '%f\n', X); fclose(fileID); ``` 这段代码将生成10000个均值为0,方差为1的高斯随机变量,并将结果保存到名为"gaussian_random_numbers.txt"的文件中。你可以根据需要修改均值和方差的值,并指定不同的文件名来保存结果。 #### 引用[.reference_title] - *1* *3* [随机变量生成算法——通过Rayleigh变量(或均匀分布变量)转换为高斯随机变量](https://blog.csdn.net/swilliamss/article/details/108912530)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [MATLAB之常见随机变量分布的PDF和CDP](https://blog.csdn.net/wanjiac/article/details/110161754)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值