https://www.luogu.org/problem/show?pid=1405
其实这题是错的;
因为费马小定理只在数和模域互质的情况下是可以的;
但是大家可以假装数据已经保证是互质的;
我们要求A1^(A2^(A3^A4))
那么直接用欧拉定理就好了;
算是欧拉定理的一个实现把;
虽然题是错的;
#include<bits/stdc++.h>
#define Ll long long
using namespace std;
const int N=10010;
int pri[N],phi[N],top;
bool com[N];
int a[1334568];
int n;
void make(){
phi[1]=1;
for(int i=2;i<=10007;i++){
if(!com[i]){phi[i]=i-1;pri[++top]=i;}
for(int j=1;j<=top;j++){
if(pri[j]*i>10007)break;
com[pri[j]*i]=1;
if(i%pri[j])phi[pri[j]*i]=phi[i]*phi[pri[j]];else
{phi[pri[j]*i]=phi[i]*pri[j];break;}
}
}
}
int ksm(int x,int y,int mo){
int ans=1;
for(;y;y>>=1,x=x*x%mo)
if(y&1)ans=ans*x%mo;
return ans;
}
int dfs(int x,int y){
if(x==n)return a[n]%y;
return ksm(a[x],dfs(x+1,phi[y]),y);
}
int main()
{
make();
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
printf("%d",dfs(1,10007));
}