生成全局唯一Id

生成全局唯一Id

参考了: http://www.cnblogs.com/heyuquan/p/global-guid-identity-maxId.html

  1. GUID
import uuid
uuid.uuid1()

优点: 确保唯一, 速度快

缺点: 太长, 不友好, 不好索引

  1. 数据库唯一索引

时间戳加上随机数,然后通过数据库做唯一性校验

import time
import random
import string

m = time.strftime('%y%m%d%H%M%S') + ''.join([random.choice(string.lowercase + string.digits) for _ in range(5)])
#检查m在数据库中是否存在,存在则重复上述过程,不存在则存入数据库并返回

优点:适合简单应用,id较短,有一定亲和力

缺点:每秒id总数有限制,并发越大性能越低, 加大数据库访问压力,需要锁表

优化:将时间戳转成62进制数

digit62 = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
#整数转化为62进制字符串
#入口:
#   x : 整数
#返回: 字符串
def int_to_str62( x ):
    try:
        x=int(x)
    except:
        x=0
    if x<0:
        x=-x
    if x==0:
        return "0"
    s=""
    while x>=62:
        x1= x % 62
        s = digit62[x1]+s
        x = x // 62
    if x>0:
       s = digit62[x]+s
    return s

#62进制字符串转化为整数
#入口:
#   s : 62进制字符串
#返回: 整数
def str62_to_int( s ):
    x = 0
    s = str(s).strip()
    if s=="":
        return x
    for y in s:
        k = digit62.find(y)
        if k>=0:
           x=x*62+k
    return x

import time
import random
import string

t = time.strftime('%y%m%d%H%M%S')
cut = [ t[i:i+2] for i in range(0, len(t), 2) ]
62t = ''.join([ int_to_str62(int(x)) for x in cut])

m = 62t + ''.join([random.choice(string.lowercase + string.digits) for _ in range(6)])

再ps. 有人说random.choice慢而且随机不均匀,我就写了两个小程序测试一下

import random
import time
import string
import timeit
import hashlib
import uuid
import threading

def randomchoice():
    return ''.join([ random.choice(string.lowercase + string.digits) for _ in range(6)])

def _time(f, n=1000000):
    print 'start timeit function ', f
    t = timeit.timeit(f, number=n)
    print 'repeat %s times and used %ss' % (n, t)
    print 'end timeit function ', f
    print

_time(randomchoice)

result

start timeit function  <function randomchoice at 0x2a7d6e0>
repeat 1000000 times and used 3.97338795662s
end timeit function  <function randomchoice at 0x2a7d6e0>

随机分布

from random import choice
import string
import collections
from matplotlib.pyplot import plot, show, barh, yticks, xlabel, title, figure
import numpy as np

tables = string.ascii_letters + string.digits

counter = collections.Counter()

for _ in range(1000000):
    counter[choice(tables)] += 1

alphats = counter.keys()
y_pos = np.arange(len(alphats))
freq = counter.values()

figure(figsize=(100,100))
barh(y_pos, freq, align='edge', alpha=1, height=0.05)
yticks(y_pos, alphats)
xlabel('frequence')
title('random choice')

show()

结果图:


可见分布还是比较平均的

  1. like mongo objectid
      时间 + md5(hostname) + pid + 递增id

import struct
import socket
import os
import time
from hashlib import md5
import threading
import random
import binascii

_inc = random.randint(0, 0xFFFFFF)
_inc_lock = threading.Lock()

oid = ""

oid += struct.pack(">i", int(time.time()))

m = md5()
m.update(socket.gethostname())
oid += m.digest()[0:3]

oid += struct.pack(">H", os.getpid() % 0xFFFF)

_inc_lock.acquire()
oid += struct.pack(">i", _inc)[1:4]
_inc = (_inc + 1) % 0xFFFFFF
_inc_lock.release()

print len(oid)
print binascii.hexlify(oid)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值