这题应该和 maxDepth 和 minDepth 放在一起。
其实吧,maxDepth就是求树的总高度,可以省略了max,但是因为跟minDepth的概念放一起所以加了max。
所以这一题就是求tree 的高度,即利用maxDepth的方法,来比较左右两支的差异即可。然后如果已经差异大于1 了,返回-1,这个-1是可以向上传递的,所以在condition里有表示。
代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root==null) return true;
else return (depth(root)!=-1);
}
public int depth(TreeNode node){
if(node==null) return 0;
int leftDepth=depth(node.left);
int rightDepth=depth(node.right);
if(Math.abs(leftDepth-rightDepth)>1 || leftDepth==-1 || rightDepth==-1) return -1;
else return 1+Math.max(leftDepth, rightDepth);
}
}
// 回到原型,也就是maxDepth那道题。因为本质上这题是要通过判断depth来输出结果,这里的depth就是maxDepth的函数。
// 区别的地方在于:这里在返回所谓的depth之前要先做判断,如果以差值已经大于1了,那就可以返回-1(任何一个负数)作为not balanced的标记。
// 当子树已经是-1时,那么父节点也就延续等于这个-1,表示not balanced
同类题:104,111,110