【网络流】hdu3277 Marriage Match III

题意:与hdu3081题意大体相同,只不过增加了一个条件是:每个女孩可以额外选k个男生。
难度:3.5
题解:把每个女生拆分为两个点g,g',两点之间连接边,容量为k。g'链接那些还没有连接过的男生。二分最大配对次数。
/*
这题跟Marriage Match II略有不同。
每个女孩除了跟自己喜欢的、朋友喜欢的男生配对以外,还可以额外跟k个其他不同的男生配对。
把每个女生拆分为两个点g,g',两点之间连接边,容量为k。
g'链接那些还没有连接过的男生。
二分最大配对次数。
*/
#include<cstdio>
#include<cstring>
#include<vector>
#include<iostream>
#define maxn 10000
#define maxm 205000
#define inf 2000000000
using namespace std;
int gap[maxn],dis[maxn],pre[maxn],cur[maxn];
int NV,m,n,f,k;
struct Edge {
    int v,val;
    int next;
    Edge(){}
    Edge( int V , int NEXT , int W = 0 ):v(V),next(NEXT),val(W){}
}edge[maxm];
int maxflow;
int cnt_edge,head[maxn];
void Insert_Edge( int u , int v , int flow = 0 ) {
    //printf("%d->%d,%d\n",u,v,flow);
    edge[cnt_edge] = Edge(v,head[u],flow);
    head[u] = cnt_edge++;
    edge[cnt_edge] = Edge(u,head[v]);
    head[v] = cnt_edge++;
}
void Init() {
    cnt_edge = 0;
    memset(head,-1,sizeof(int)*(NV+1));
}
int Sap( int st, int en )
{
    memset(dis,0,sizeof(int)*( NV+1));
    memset(gap,0,sizeof(int)*( NV+1));
    for( int i  = 0 ; i <  NV ; i++ )
        cur[i] = head[i];
    int u = pre[st] = st,maxflow = 0,aug = inf;
    gap[0] = NV;
    while( dis[st] < NV )
    {
loop:    for( int &i = cur[u]; i != -1 ; i = edge[i].next ) {
            int v =edge[i].v;
            if( edge[i].val && dis[u] == dis[v]+1) {
                aug = aug <  edge[i].val? aug: edge[i].val;
                pre[v] = u;
                u = v;
                if( v == en ) {
                    maxflow += aug;
                    for( u = pre[u]; v != st ; v = u,u = pre[u] ) {
                         edge[cur[u]].val -= aug;
                         edge[cur[u]^1].val += aug;
                    }
                    aug = inf;
                }
                goto loop;
            }
        }
        int mindis =  NV;
        for( int i =  head[u]; i != -1 ; i =  edge[i].next ) {
            int v =  edge[i].v;
            if(  edge[i].val && mindis > dis[v] ) {
                cur[u] = i;
                mindis = dis[v];
            }
        }
        if( --gap[dis[u]] == 0 ) break;
        gap[ dis[u] = mindis+1 ]++;
        u = pre[u];
    }
    return maxflow;
}
pair<int,int> kp[1000005];
int root[255];
int GetRoot( int x ) {
    int r = x;
    while( r != root[r] ) r = root[r];
    int i = root[x],j;
    while( i != r ) {
        j = root[i];
        root[i] = r;
        i = j;
    }
    return r;
}
bool Hash[255][255];
void Build_Graph( int mid ) {
    NV = 3 * n + 2;
    Init();
    int st = 0,en = 3*n+1;
    for( int i = 1 ; i <= n ; i++ ) {
        Insert_Edge(st,i,mid);
        Insert_Edge(i+n*2,en,mid);
        Insert_Edge(i,i+n,k);
        for( int j = 1 ; j <= n ; j++ )
            Hash[i][j] = false;
    }
    for( int i = 0 ;  i < m ; i++ ) {
        int g = kp[i].first;
        int b = kp[i].second;
        for( int j = 1 ; j <= n ; j++ ) {
            if( root[g] == root[j] && !Hash[j][b] ) {
                Hash[j][b] = true;
                Insert_Edge(j,b+2*n,1);
            }
        }
    }
    for( int i = 1 ; i <= n ; i++ )
        for( int j = 1 ; j <= n ; j++ )
            if( !Hash[i][j] )
                Insert_Edge(i+n,j+2*n,1);
}
void Solve() {
    int l = 0 , r = n;
    int mid;
    int ans = 0;
    while( l <= r ) {
        mid = ( l + r ) >> 1;
        Build_Graph(mid);
        if( Sap(0,3*n+1) == n * mid ) {
            l = mid+1;
            ans = mid;
        } else r = mid-1;
    }
    printf("%d\n",ans);
}
int main() {
    int t;
    scanf("%d",&t);
    while(t--) {
        scanf("%d%d%d%d",&n,&m,&k,&f);
        int a,b;
        for( int i = 1 ; i <= n ; i++ )
            root[i] = i;
        for( int i = 0 ; i < m ; i++ )
            scanf("%d%d",&kp[i].first,&kp[i].second);
        while(f--) {
            scanf("%d%d",&a,&b);
            int fa = GetRoot(a);
            int fb = GetRoot(b);
            if( fa != fb ) {
                root[fa] = fb;
            }
        }
        for( int i = 1 ; i <= n ; i++ ) root[i] = GetRoot(i);
        //for( int i = 1 ; i <= n ; i++ ) printf("root[%d] = %d\n",i,root[i]);
        Solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值