自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 零科研经历,但我幸运中了顶会AAAI2024,近期还投了ECCV2024两篇

经过这次培训,我对于做科研发文章有了更多的理解。我本科是学习土木的,硕士是土木与AI的交叉学科,由于自己的专业是非科班,导师对AI不太懂,没有系统的科研经历,靠自己一个人去想idea更是一个难点,目前业界对顶会论文的要求比较普遍,无论是申博还是就业都需要有高质量的文章。我实习期间的mentor有一篇文章,从2022年投递,时隔2年,这几天才中了ICML2024,所以我觉得把自己的文章做好且完善好,终究是会被认可的,不要焦虑,有价值的文章即使只挂arxiv一样会被大家所认可的,比如mobilenet。

2024-05-24 16:31:00 689

原创 如何写好一篇学术论文

会议时间:2024/03/26 19:45-20:45 (GMT+08:00) 中国标准时间 - 北京。#腾讯会议:785-419-583复制该信息,打开手机腾讯会议即可参与。会议主题:如何写好一篇学术论文。必索思 邀请您参加腾讯会议。

2024-03-26 15:00:25 144

原创 如何写好一篇学术论文

别担心,我们的直播将为你解决困惑!我们邀请学术达人王博士(剑桥博士后)揭秘顶会论文写作的核心技巧和秘笈,为你打开通往顶会顶刊的大门!无论你是研究生还是青年学者,这场直播都将为你带来无限学术启发和科研动力!扫码报名,让我们一起探寻学术路上的星辰大海,实现你的学术梦想!更有免费的Ai学术培训以及实习找工内推等你来拿!每个热爱科研的你,都渴望有一天能在顶会顶刊上展现学术价值。但是,要写好一篇顶会论文,困扰着你我他的问题真的太多了!论文选题、文献综述、实验设计、论文结构……面对这些挑战,你是否也感到无从下手。

2024-03-22 13:11:00 377 1

原创 第三篇:大模型技术进阶之stage三步走

因为每次推理 next token的时候,模型都会根据前文生成next token的概率分布,但是考虑到过拟合的问题,模型不会每次只输出概率最高的那个token。然后排序结果可以通过一些算法转换为得分,我们把得分作为一个新的token放到QA后面,这样SFT模型就可以转换为一个reward model,从而为我们最终服务于增强学习的stage。尽管此时模型已经从GPT模型finetune为一个专用的助手模型,但是它仅仅是具备了QA的能力,它的输出结果可能并不是最优的。目前市面上对人像生成最为真实的模型。

2024-01-15 18:00:00 1026 1

原创 第二篇:大模型技术进化之GPT-1,2,3

同时通过in context的数据结构,让模型能够通过context中的prompt理解所要完成的任务,以便可以更好的对齐到下游任务中去。但是很多实验也表明,GPT-2的无监督学习的能力还有很大的提升空间,甚至在有些任务上的表现不比随机的好。GPT-2表明随着模型容量和数据量的增大,其潜能还有进一步开发的空间,基于这个思想,诞生了我们下面要介绍的GPT-3。那么下一步,就是如何将GPT-3习得的知识更好的对齐到下游任务中,真正让其发挥作用,这也就是ChatGPT要做的事。但是,GPT-1也有一定的缺点。

2024-01-14 23:59:53 896 1

原创 第一篇:大模型技术基础之Transformer崛起

其实这里KQV都是单词向量的分身,一个分身Q负责出去找联系,一个分身K作为被找的对象,找完这些联系,不能白白浪费吧,所以就加权到V身上。尽管作为一个语言模型,LLM展现出了出色的多模态数据融合能力、推理能力和新颖性,这些正在颠覆传统深度学习的研发范式。本文主要阐述大模型的技术演变路线,侧重于科普大模型的技术逻辑,技术痛点,以及一些商业机会,没有深入介绍技术细节。看完此文,你可以了解到大模型的前世今生,理解到技术发展趋势,适合准备入门大模型以及想在大模型方面创业的人士,如有表述不当之处,敬请提出。

2024-01-13 23:29:09 1040

原创 ICCV2023清华Retinexformer夺得十三大暗光增强新sota

在图1 (a) 中,Retinexformer 采用我们设计的 ORF。现有的深度学习方法大多基于卷积神经网络,不擅长于捕获远距离依赖关系,不利于图像的修复,因为图像中像素不是单独存在的,而是存在一定范围内的依赖关系。然而这类算法大都需要一个冗长的流程,采取一个多阶段的训练方案,分别训练多个不同的 CNN 来做不同的任务,如解耦彩色图像、给反射图去噪、调整照度图等。BThoth必索思,我们团队是来自清华剑桥的优秀硕博、博士后,具备丰富的学术工程经验,如果你想提升自己的ai学术工程能力,那就关注我们吧。

2024-01-10 14:24:26 1556

原创 入门Transformer不慌系列一

如果要把a1,a2,a3,a4翻译成b1,b2,b3,b4时,按照RNN的结构,翻译b1时,需要先完成链路中其他历史状态的计算,这样就很难并行,于是作者想到用CNN来取代RNN,因为CNN更容易实现并行,下图三角形代表卷积操作,如果在CNN的高层,因为感受野变大的缘故,所以能够包含更多的输入,这样对于全部输入的全局语义,就可以获取到了。BThoth必索思,我们团队是来自清华剑桥的优秀硕博、博士后,具备丰富的学术工程经验,如果你想提升自己的ai学术工程能力,那就关注我们吧。

2024-01-09 11:07:47 1323 1

原创 CVPR经典车道线检测CLRNet技术拆解

如图6,上面是Line IoU的解释,定义了车道线的真值点G以及预测点P,然后用-e, +e对横坐标x进行左右偏移,形成一条线段,e设为15。如果我们记真值框的中心点为G,预测框的中心点为P,当两个框的高变为1,那这两个框就变成一条线段,框的中心点到左右两边的距离是一样的,就与Line IoU 的-e,+e是一样的。Refinement的方法采用的FPN(特征金字塔)[2],这样可以获取到多尺度的特征信息,FPN的输出特征为{L0,L1,L2},而Refined操作是怎么实现的呢。

2024-01-08 21:18:55 2324 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除