/*
二分图最小点权覆盖
从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。
二分图最大点权独立集
在二分图中找到权值和最大的点集,使得它们之间两两没有边。其实它是最小点权覆盖的对偶问题。答案=总权值-最小点覆盖集
*/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
int a[33][33];
struct node
{
int v,val,next;
}e[1111111];
int head[1111111],top;
int cur[1111111];
int xx[4]={0,0,1,-1};
int yy[4]={1,-1,0,0};
int st,ed,n;
void add(int u,int v,int val)
{
e[top].v=v;
e[top].val=val;
e[top].next=head[u];
head[u]=top++;
e[top].v=u;
e[top].val=0;
e[top].next=head[v];
head[v]=top++;
}
int judge(int x,int y)
{
if(x>=0&&x<n&&y>=0&&y<n)return 1;
else return 0;
}
int dis[1111111];
int bfs()
{
memset(dis,0,sizeof (dis));
dis[st]=1;
queue<int>q;
q.push(st);
while(!q.empty())
{
int f=q.front();
q.pop();
if(f==ed)return 1;
for(int i=head[f];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(!dis[v]&&e[i].val)
{
dis[v]=dis[f]+1;
q.push(v);
}
}
}
return 0;
}
int dfs(int u,int maxf,int t)
{
if(u==t)
return maxf;
int res=0;
for(int &i=cur[u];i!=-1;i=e[i].next)
{
int v=e[i].v;
if(e[i].val&&dis[v]==dis[u]+1)
{
int f=dfs(v,min(maxf-res,e[i].val),t);
e[i].val-=f;
e[i^1].val+=f;
res+=f;
if(res==maxf)
return res;
}
}
return res;
}
int dinic()
{
int ans=0;
while(bfs())
{
memcpy(cur,head,sizeof head);//当前弧优化
ans+=dfs(st,INF,ed);
}
return ans;
}
int main()
{
while(~scanf("%d",&n))
{
st=n*n,ed=st+1;
int sum=0;
memset(head,-1,sizeof head);
top=0;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
sum+=a[i][j];
if((i+j)%2==0)
{
add(st,i*n+j,a[i][j]);
for(int k=0;k<4;k++)
{
int x=i+xx[k],y=j+yy[k];
if(judge(x,y))
{
add(i*n+j,x*n+y,INF);
}
}
}
else add(i*n+j,ed,a[i][j]);
}
}
int f=dinic();
printf("%d\n",sum-f);
}
}
hdu 1565 最大点全独立集
最新推荐文章于 2020-06-14 08:20:02 发布