hdu 1565 最大点全独立集

/*
二分图最小点权覆盖

从x或者y集合中选取一些点,使这些点覆盖所有的边,并且选出来的点的权值尽可能小。
二分图最大点权独立集
在二分图中找到权值和最大的点集,使得它们之间两两没有边。其实它是最小点权覆盖的对偶问题。答案=总权值-最小点覆盖集
*/
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
int a[33][33];
struct node
{
    int v,val,next;
}e[1111111];
int head[1111111],top;
int cur[1111111];
int xx[4]={0,0,1,-1};
int yy[4]={1,-1,0,0};
int st,ed,n;
void add(int u,int v,int val)
{
    e[top].v=v;
    e[top].val=val;
    e[top].next=head[u];
    head[u]=top++;
    e[top].v=u;
    e[top].val=0;
    e[top].next=head[v];
    head[v]=top++;
}
int judge(int x,int y)
{
    if(x>=0&&x<n&&y>=0&&y<n)return 1;
    else return 0;
}
int dis[1111111];
int bfs()
{
    memset(dis,0,sizeof (dis));
    dis[st]=1;
    queue<int>q;
    q.push(st);
    while(!q.empty())
    {
        int f=q.front();
        q.pop();
        if(f==ed)return 1;
        for(int i=head[f];i!=-1;i=e[i].next)
        {
            int v=e[i].v;
            if(!dis[v]&&e[i].val)
            {
                dis[v]=dis[f]+1;
                q.push(v);
            }
        }
    }
    return 0;
}
int dfs(int u,int maxf,int t)
{
    if(u==t)
        return maxf;
    int res=0;
    for(int &i=cur[u];i!=-1;i=e[i].next)
    {
        int v=e[i].v;
        if(e[i].val&&dis[v]==dis[u]+1)
        {
            int f=dfs(v,min(maxf-res,e[i].val),t);
            e[i].val-=f;
            e[i^1].val+=f;
            res+=f;
            if(res==maxf)
                return res;
        }
    }
    return res;
}
int dinic()
{
    int ans=0;
    while(bfs())
    {
        memcpy(cur,head,sizeof head);//当前弧优化
        ans+=dfs(st,INF,ed);
    }
    return ans;
}
int main()
{
    while(~scanf("%d",&n))
    {
         st=n*n,ed=st+1;
        int sum=0;
        memset(head,-1,sizeof head);
        top=0;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%d",&a[i][j]);
                sum+=a[i][j];
                if((i+j)%2==0)
                {
                    add(st,i*n+j,a[i][j]);
                    for(int k=0;k<4;k++)
                    {
                        int x=i+xx[k],y=j+yy[k];
                        if(judge(x,y))
                        {
                            add(i*n+j,x*n+y,INF);
                        }
                    }
                }
                else add(i*n+j,ed,a[i][j]);
            }
        }
        int f=dinic();
        printf("%d\n",sum-f);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>