探索树算法:C语言实现二叉树与平衡树

探索树算法:C语言实现二叉树与平衡树

树是计算机科学中一个重要且广泛应用的数据结构,它在许多领域都有着重要作用。本篇博客将深入介绍两种常见的树算法:二叉树遍历和平衡二叉树(AVL树),并提供在C语言中的实现示例。

二叉树遍历

二叉树是一种每个节点最多有两个子节点的树结构。常见的二叉树遍历方式有三种:前序遍历、中序遍历和后序遍历。下面是这三种遍历方式的C语言实现示例:

#include <stdio.h>
#include <stdlib.h>

typedef struct Node {
    int data;
    struct Node* left;
    struct Node* right;
} Node;

Node* createNode(int data) {
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->left = NULL;
    newNode->right = NULL;
    return newNode;
}

void preOrder(Node* root) {
    if (root == NULL) return;
    printf("%d ", root->data);
    preOrder(root->left);
    preOrder(root->right);
}

void inOrder(Node* root) {
    if (root == NULL) return;
    inOrder(root->left);
    printf("%d ", root->data);
    inOrder(root->right);
}

void postOrder(Node* root) {
    if (root == NULL) return;
    postOrder(root->left);
    postOrder(root->right);
    printf("%d ", root->data);
}

int main() {
    Node* root = createNode(1);
    root->left = createNode(2);
    root->right = createNode(3);
    root->left->left = createNode(4);
    root->left->right = createNode(5);

    printf("Preorder traversal: ");
    preOrder(root);
    printf("\n");

    printf("Inorder traversal: ");
    inOrder(root);
    printf("\n");

    printf("Postorder traversal: ");
    postOrder(root);
    printf("\n");

    return 0;
}

平衡二叉树(AVL树)

平衡二叉树是一种特殊的二叉搜索树,它的每个节点的左子树和右子树的高度差不超过1。这确保了树的高度始终保持在较小的范围内,提高了查找、插入和删除操作的效率。下面是AVL树的插入操作的C语言实现示例:

#include <stdio.h>
#include <stdlib.h>

typedef struct Node {
    int data;
    struct Node* left;
    struct Node* right;
    int height;
} Node;

int max(int a, int b) {
    return (a > b) ? a : b;
}

int getHeight(Node* node) {
    if (node == NULL) return 0;
    return node->height;
}

int getBalanceFactor(Node* node) {
    if (node == NULL) return 0;
    return getHeight(node->left) - getHeight(node->right);
}

Node* createNode(int data) {
    Node* newNode = (Node*)malloc(sizeof(Node));
    newNode->data = data;
    newNode->left = NULL;
    newNode->right = NULL;
    newNode->height = 1;
    return newNode;
}

Node* rotateRight(Node* y) {
    Node* x = y->left;
    Node* T2 = x->right;

    x->right = y;
    y->left = T2;

    y->height = max(getHeight(y->left), getHeight(y->right)) + 1;
    x->height = max(getHeight(x->left), getHeight(x->right)) + 1;

    return x;
}

Node* rotateLeft(Node* x) {
    Node* y = x->right;
    Node* T2 = y->left;

    y->left = x;
    x->right = T2;

    x->height = max(getHeight(x->left), getHeight(x->right)) + 1;
    y->height = max(getHeight(y->left), getHeight(y->right)) + 1;

    return y;
}

Node* insert(Node* root, int data) {
    if (root == NULL) return createNode(data);

    if (data < root->data) {
        root->left = insert(root->left, data);
    } else if (data > root->data) {
        root->right = insert(root->right, data);
    } else {
        return root; // Duplicate keys not allowed
    }

    root->height = 1 + max(getHeight(root->left), getHeight(root->right));

    int balance = getBalanceFactor(root);

    // Left Left Case
    if (balance > 1 && data < root->left->data) {
        return rotateRight(root);
    }

    // Right Right Case
    if (balance < -1 && data > root->right->data) {
        return rotateLeft(root);
    }

    // Left Right Case
    if (balance > 1 && data > root->left->data) {
        root->left = rotateLeft(root->left);
        return rotateRight(root);
    }

    // Right Left Case
    if (balance < -1 && data < root->right->data) {
        root->right = rotateRight(root->right);
        return rotateLeft(root);
    }

    return root;
}

void inOrder(Node* root) {
    if (root == NULL) return;
    inOrder(root->left);
    printf("%d ", root->data);
    inOrder(root->right);
}

int main() {
    Node* root = NULL;

    root = insert(root, 10);
    root = insert(root, 20);
    root = insert(root, 30);
    root = insert(root, 40);
    root = insert(root, 50);
    root = insert(root, 25);

    printf("Inorder traversal of AVL tree: ");
    inOrder(root);
    printf("\n");

    return 0;
}

总结

本篇博客深入探讨了树算法中的两个重要方面:二叉树遍历和平衡二叉树(AVL树)。通过C语言实现

的示例代码,您可以更好地理解这些算法的实际运行原理和用途。树算法在数据库、图形处理、编译器设计等领域都有着广泛的应用,掌握这些算法将有助于您解决各种实际问题。

希望本文对您学习树算法和C语言编程有所帮助!如果您有任何问题或建议,请随时在评论区留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不一样的老墨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值