PyFluent入门之旅(5)后处理

接着PyFluent入门之旅(4)算例求解后我们已经完成了求解,并且保存了.dat的结果文件。

现在可以利用Fluent内置的后处理功能进行图像与数据曲线的输出。

1. 计算结果文件的读取

如果需要在计算完成后立即进行后处理,那么直接在求解代码后继续后处理代码的编写即可。

如果已经有求解完成的算例仅需要读取并后处理,那么可以使用下述代码进行操作。

import ansys.fluent.core as pyfluent
solver = pyfluent.launch_fluent(precision="double", processor_count=4, mode="solver")
solver.tui.file.read_case_data('mixing_elbow1.cas.h5')

注意读取结果文件的格式不是.dat而是.cas或.cas.h5,其原因如下图所示,在需要同时读取case与data文件时,fluent识别的格式依然为case文件。所以需要保持case与data文件的文件名一致。

在这里插入图片描述

在这里插入图片描述

2. 云图创建

首先在模型的对称面创建温度云图,我们在tui界面创建的步骤如下图所示:

在这里插入图片描述

在这里插入图片描述

将上述tui命令转换为PyFluent代码即可

solver.tui.display.objects.create(
    "contour",
    "contour-temp",
    "filled?",
    "yes",
    "node-values?",
    "yes",
    "field",
    "temperature",
    "surfaces-list",
    "symmetry-xyplane",
    "()",
    "coloring",
    "smooth",
    "quit",
)

效果图如下

在这里插入图片描述

3. 矢量图创建

接下来尝试创建速度矢量图,和上述云图一致,转换tui命令即可

在这里插入图片描述
在这里插入图片描述

solver.tui.display.objects.create(
    "vector",
    "vector-vel",
    "style",
    "arrow",
    "surface-list",
    "symmetry-xyplane",
    "()",
    "scale",
    "scale-f",
    "4",
    "quit",
    "skip",
    "2",
    "quit",
)

效果图为

在这里插入图片描述

4. 创建等值面

创建等值面的tui操作为

在这里插入图片描述

因此代码为:

solver.tui.surface.iso_surface(
    "z-coordinate", "z=0_outlet", "outlet", "()", "()", "0", "()"
)

5. 创建XY坐标图

三部分创建的等值面温度为数据创建XY坐标图
在这里插入图片描述

solver.tui.display.objects.create(
    "xy",
    "xy-outlet-temp",
    "y-axis-function",
    "temperature",
    "surfaces-list",
    "z=0_outlet",
    "()",
    "quit",
)

效果图为:

在这里插入图片描述

在完成后处理之后,我们需要再一次保存cas与data文件,可以使用以下代码

solver.tui.file.write_case_data("mixing_elbow2_tui.cas.h5")

最后关闭Fluent求解器即可。

solver.exit()
<think>好的,我现在需要帮助用户了解如何使用PyFluent进行ANSYS FluentPython API编程。首先,我得回顾一下用户提供的引用内容,确保回答准确。引用[1]提到安装验证的代码,引用[2]是入门指南编译相关,引用[3]则是项目地址基础介绍。用户的问题主要集中在编程应用上,所以需要围绕这些引用展开。 首先,我应该从安装验证开始,因为这是第一步。用户可能需要知道如何检查PyFluent是否正确安装,所以引用[1]中的代码示例很关键。接下来,连接到Fluent会话是基础步骤,这里需要详细说明不同的启动模式,比如"solver""meshing",并给出示例代码。 然后是基础操作,比如设置工作目录、导入网格、设置求解参数。这部分需要结合PyFluent的常见API方法,例如file.read_casedefine.models.energy.enable。用户可能对如何具体调用这些方法有疑问,所以每个步骤都要清晰,并附带代码片段。 接下来是求解结果处理。这部分需要说明如何初始化求解、运行迭代,以及如何获取结果数据。比如使用solution.initialization.hybrid_initializerun calculation的iterate方法。结果导出方面,可能需要提到导出数据文件或者使用后处理工具。 高级功能方面,参数化扫描自定义函数是用户可能感兴趣的进阶内容。引用[2]提到的PyFluent-Parametric可以作为扩展资源推荐,但用户问题主要聚焦在基础API使用,所以这里点到为止即可。 最后,生成相关问题时要考虑用户可能遇到的后续问题,比如如何调试脚本、优化性能、处理复杂模型以及结合其他工具。这些问题能帮助用户进一步探索PyFluent的应用。 需要注意的是,所有代码块要使用正确的格式,数学表达式用$...$,独立公式用$$...$$,但在这个回答中可能数学公式不多,主要是代码示例。同时,引用标识要自然地添加在相关段落末尾,确保用户知道每个建议的来源。 总结一下,回答的结构应该是:安装验证→连接会话→基础操作→求解设置→结果处理→高级功能→相关问题。每一步都结合引用内容,确保信息准确可靠。还要检查LaTeX语法是否正确,虽然这个回答中可能用到的数学公式较少,但如果有的话要正确格式化。同时保持语言口语化,避免使用专业术语过多,让用户容易理解。</think>### 使用 PyFluent 进行 ANSYS Fluent Python API 编程的步骤 #### 1. **安装与验证** - 确保已安装 `ansys-fluent-core` 包: ```bash pip install ansys-fluent-core ``` - 验证安装是否成功(引用[^1]): ```python import ansys.fluent.core as pyfluent solver_session = pyfluent.launch_fluent(mode="solver") solver_session.health_check() # 返回 "Healthy" 表示正常 ``` #### 2. **连接到 Fluent 会话** - 启动 Fluent 的两种模式: - **求解器模式** (`mode="solver"`):用于设置边界条件、求解参数等。 - **网格模式** (`mode="meshing"`):用于网格生成编辑。 ```python session = pyfluent.launch_fluent(mode="solver") ``` #### 3. **基础操作** - **设置工作目录**: ```python session.file.read_case("example.cas") # 读取现有案例 session.file.write_case("modified.cas") # 保存案例 ``` - **设置物理模型**(例如启用能量方程): ```python session.define.models.energy.enable = True ``` #### 4. **求解设置与运行** - **初始化求解器**: ```python session.solution.initialization.hybrid_initialize() ``` - **设置迭代次数**: ```python session.run_calculation.iterate(iter_count=100) ``` #### 5. **结果处理** - **导出数据**: ```python session.results.graphics.mesh["mesh-1"].plot() # 可视化网格 session.file.write_data("results.dat") # 导出结果文件 ``` #### 6. **高级功能** - **参数化分析**(引用[^2]): 使用 `PyFluent-Parametric` 进行批量仿真,例如修改雷诺数 $Re = \frac{\rho v L}{\mu}$ 并分析结果。 --- ### 代码示例:简单管道流动仿真 ```python import ansys.fluent.core as pyfluent # 启动 Fluent 会话 session = pyfluent.launch_fluent(mode="solver") # 导入网格并设置模型 session.file.read_case("pipe_flow.cas") session.define.models.viscous.k_epsilon_std.enable = True # 设置边界条件(假设入口速度为 $v=5 \, \text{m/s}$) session.define.boundary_conditions.velocity_inlet["inlet"].vmag = 5 # 运行求解 session.solution.initialization.hybrid_initialize() session.run_calculation.iterate(iter_count=200) # 导出结果 session.file.write_data("pipe_results.dat") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值