概述
本教程探讨了在使用大型语言模型的背景下提示链和排序的概念。我们将使用 OpenAI 的 GPT 模型和 LangChain 库来演示如何连接多个提示并为更复杂的 AI 驱动任务构建逻辑流程。主题
随着人工智能应用变得越来越复杂,我们经常需要将复杂的任务分解成更小、更易于管理的步骤。提示链和排序使我们能够引导语言模型完成一系列相互关联的提示,从而实现更结构化和可控的输出。这种方法对于需要多个处理或决策阶段的任务特别有用。内容概要
- 基本提示链:将一个提示的输出连接到另一个提示的输入。
- 顺序提示:创建逻辑提示流来引导人工智能完成多步骤过程。
- 动态提示生成:使用一个提示的输出动态生成下一个提示。
- 错误处理和验证:在提示链中实施制衡。
教案
我们首先使用必要的库来设置环境。然后,我们将通过连接两个简单的提示来探索基本的提示链。我们将继续进行更复杂的顺序提示,其中我们将引导 AI 完成多步骤分析过程。接下来,我们将演示如何根据先前的输出动态生成提示。最后,我们将实现错误处理和验证技术,以使我们的提示链更加健壮。在整个教程中,我们将使用实际示例来说明这些概念,例如多步骤文本分析任务和动态问答系统。
结论
在本教程结束时,您将对如何在 AI 应用程序中实现提示链和排序有深入的了解。这些技术将使您能够处理更复杂的任务,提高 AI 生成内容的连贯性和相关性,并创造更具互动性和动态性的 AI 驱动体验。设置
让我们首先导入必要的库并设置我们的环境。import os
import re
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
# Load environment variables
load_dotenv()
# Set up OpenAI API key
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')
# Initialize the language model
llm = ChatOpenAI(model="gpt-4o-mini")
基本提示链
让我们从一个简单的提示链示例开始。我们将创建两个提示:一个用于生成一个简短的故事,另一个用于总结它。# Define prompt templates
story_prompt = PromptTemplate(
input_variables=["genre"],
template="用 3-4 句话写一个简短的{genre}故事。"
)
summary_prompt = PromptTemplate(
input_variables=["story"],
template="用一句话总结以下故事:\n {story}"
)
# Chain the prompts
def story_chain(genre):
"""根据给定的类型生成故事及其摘要。
参数:
genre(str):要生成的故事的类型。
返回:
tuple:包含生成的故事及其摘要的元组。
"""
story = (story_prompt | llm).invoke({"genre": genre}).content
summary = (summary_prompt | llm).invoke({"story": story}).content
return story, summary
# Test the chain
genre = "科幻小说"
story, summary = story_chain(genre)
print(f"故事: {story}\n\n摘要: {summary}")
故事:2147 年,人类发现了一种通过量子纠缠发送时间锁定信息与未来自我交流的方法。当艾娃收到未来自我发出的神秘警告时,她努力解读其含义:“相信阴影,而不是光明。”当太阳耀斑威胁要摧毁地球电网时,她意识到警告是关于一个在混乱中蓬勃发展的隐藏派系。艾娃拥抱黑暗,团结地下抵抗力量,确保人类不仅能生存下来,还能从灰烬中重生。
摘要: 2147 年,艾娃破译了未来自己发出的关于太阳耀斑危机中隐藏派系的神秘警告,这促使她团结了一支地下抵抗力量,帮助人类不仅在混乱中生存下来,而且繁荣发展。
顺序提示
现在,让我们为多步骤分析任务创建更复杂的提示序列。我们将分析给定文本的主要主题、语气和关键要点。# Define prompt templates for each step
theme_prompt = PromptTemplate(
input_variables=["text"],
template="确定以下文本的主要主题:\n {text} "
)
tone_prompt = PromptTemplate(
input_variables=["text"],
template="描述以下文本的整体基调:\n {text}"
)
takeaway_prompt = PromptTemplate(
input_variables=["text", "theme", "tone"],
template="给定以下带有主要主题' {theme} '和基调' {tone} '的文本,关键要点是什么?\n {text} "
)
def analyze_text(text):
"""对给定文本执行多步骤分析。
参数:
文本(str):要分析的文本。
返回:
dict:包含文本的主题、语气和关键要点的字典。
"""
theme = (theme_prompt | llm).invoke({"text": text}).content
tone = (tone_prompt | llm).invoke({"text": text}).content
takeaways = (takeaway_prompt | llm).invoke({"text": text, "theme": theme, "tone": tone}).content
return {"主体": theme, "基调": tone, "要点": takeaways}
# Test the sequential prompting
sample_text = "人工智能的快速发展让专家们既兴奋又担忧。虽然人工智能有望彻底改变行业并改善我们的日常生活,但它也引发了有关隐私、工作流失和滥用可能性的道德问题。当我们站在这场技术革命的边缘时,我们必须谨慎而有远见地对待人工智能的发展,确保最大限度地发挥其优势,同时将其风险降至最低。"
analysis = analyze_text(sample_text)
for key, value in analysis.items():
print(f"{key.capitalize()}: {value}\n")
主题:本文的主题是人工智能进步的双重性,强调了其发展带来的潜在好处和道德问题。它强调需要采取谨慎和负责任的方法来利用人工智能的优势,同时解决隐私、工作流失和潜在滥用等问题。
基调:文章整体语气谨慎而平衡。它表达了对人工智能潜在好处的兴奋之情,同时承认了人工智能带来的担忧和道德困境。强调需要仔细考虑和预见,反映了对人工智能发展的负责任和深思熟虑的态度,既强调乐观,又强调谨慎。
要点:根据提供的主题和基调,以下是要点:
1. **人工智能进步的二重性**:文中强调了人工智能的二重性,既带来了显著的好处,也带来了严重的伦理问题。
2. **人工智能的好处**:人工智能有可能彻底改变各个行业并改善日常生活,展现出其带来积极改变的希望。
3. **道德问题**:随着人工智能的发展,出现了一些重要的问题,包括侵犯隐私、工作流失和滥用风险,必须予以解决。
4. **需要谨慎**:在人工智能开发中,谨慎和负责任的态度至关重要,以确保有效利用该技术同时降低其风险。
5. **平衡的观点**:文本保持了平衡的语气,既反映了对人工智能可能性的兴奋,也反映了对其影响的警惕,主张在其发展过程中进行深思熟虑。
6. **远见的重要性**:强调在规划和监管人工智能时具有远见的必要性,以最大限度地实现利益最大化并最大限度地减少潜在危害。
7. **行动呼吁**:鼓励利益相关者参与负责任的实践,在追求人工智能创新的过程中优先考虑道德考虑。
动态提示生成
在本节中,我们将创建一个动态问答系统,根据先前的答案生成后续问题。# Define prompt templates
answer_prompt = PromptTemplate(
input_variables=["question"],
template="请简明扼要地回答以下问题:\n {question}"
)
follow_up_prompt = PromptTemplate(
input_variables=["question", "answer"],
template="根据问题‘ {question} ’和答案‘ {answer} ’,生成相关的后续问题。"
)
def dynamic_qa(initial_question, num_follow_ups=3):
"""行一个带有后续问题的动态问答环节。
参数:
initial_question(str):开始问答环节的初始问题。
num_follow_ups(int):要生成的后续问题的数量。
返回:
列表:包含问题和答案的字典列表。
"""
qa_chain = []
current_question = initial_question
for _ in range(num_follow_ups + 1): # +1 for the initial question
answer = (answer_prompt | llm).invoke({"question": current_question}).content
qa_chain.append({"question": current_question, "answer": answer})
if _ < num_follow_ups: # Generate follow-up for all but the last iteration
current_question = (follow_up_prompt | llm).invoke({"question": current_question, "answer": answer}).content
return qa_chain
# Test the dynamic Q&A system
initial_question = "量子计算的潜在应用有哪些?"
qa_session = dynamic_qa(initial_question)
for i, qa in enumerate(qa_session):
print(f"Q{i+1}: {qa['question']}")
print(f"A{i+1}: {qa['answer']}\n")
Q1:量子计算的潜在应用有哪些?
A1:量子计算的潜在应用包括:
1. **密码学**:破解经典加密方法,发展量子安全通信。
2. **优化**:解决物流、金融和供应链管理中复杂的优化问题。
3. **药物发现**:模拟分子相互作用,加快药物开发。
4. **材料科学**:在量子层面设计具有特定特性的新材料。
5. **人工智能**:增强机器学习算法和数据分析。
6. **财务建模**:改进风险评估和投资组合优化。
7. **天气预报**:增强气候和天气模式的预测模型。
8. **量子模拟**:研究物理学和化学中的复杂量子系统。
这些应用利用量子叠加和纠缠来执行超出传统计算机能力的计算。
Q2:量子计算技术的开发和实施目前面临哪些挑战和限制?
A2:目前量子计算技术的开发和实施面临的挑战和限制包括:
1. **技术复杂性**:由于需要精确控制量子位和纠错,因此构建和维护量子计算机非常复杂。
2. **退相干**:量子比特对环境很敏感,由于退相干会导致量子信息丢失,从而限制运行时间。
3. **可扩展性**:增加量子比特的数量同时保持一致性和连接质量是一项重大挑战。
4. **错误率**:与经典门相比,量子门具有更高的错误率,因此需要强大的纠错方法。
5.**资源要求**:量子计算机通常需要极端条件,例如超低温,这使得它们成本高昂且难以操作。
6. **算法开发**:能够有效利用量子计算优势的算法数量有限,需要进行更多研究来开发实际应用。
7. **劳动力和知识差距**:缺乏具备量子计算专业知识的熟练专业人员阻碍了进步和创新。
8. **与经典系统的集成**:开发能够有效利用量子和经典计算资源的高效混合系统仍然是一个持续的挑战。
9. **监管和道德问题**:量子计算对安全和隐私的潜在影响引发了需要解决的监管和道德问题。
这些挑战阻碍了量子计算的广泛应用和全部潜力的实现。
问 3:我们正在探索哪些策略或进步来克服量子计算技术的挑战和局限性?
A3:为了克服量子计算技术的挑战和局限性,我们正在探索几种策略和进步,包括:
1. **纠错**:开发强大的量子纠错码来减轻退相干和噪声的影响。
2. **量子至上**:通过专门的算法展示量子优势,比传统计算机更快地解决特定问题。
3. **材料科学**:研究提高相干时间和操作稳定性的量子比特的新材料,例如拓扑量子比特。
4. **混合系统**:将量子计算与传统计算系统相结合,以优化工作负载并提高性能。
5. **可扩展性**:创新可扩展架构,如超导量子比特、离子阱和光子系统,以增加量子处理器中的量子比特数量。
6. **量子软件开发**:创建先进的量子算法和软件工具,以更好地利用量子硬件。
7. **互连和联网**:探索量子通信协议和量子网络连接多个量子处理器,实现更大规模的计算。
8. **商业化努力**:与工业界合作,加速量子技术在各个领域的实际应用。
这些举措旨在提高量子计算系统的可靠性、可扩展性和实用性。
问 4:这些策略中最近有哪些突破或项目具体体现出对推动量子计算技术发展的前景?
A4:量子计算技术的最新突破包括:
1. **超导量子比特**:谷歌的 Sycamore 处理器在 2019 年展示了量子霸权,后续的改进主要集中在纠错和相干时间上。
2. **捕获离子**:IonQ 和霍尼韦尔开发了高保真度的捕获离子系统,从而推动了可扩展量子处理器的进步。
3. **量子纠错**:研究人员在纠错码(如表面码)方面取得了重大进展,提高了量子计算的可靠性。
4. **量子网络**:量子互联网联盟等项目正在研究量子中继器和纠缠分布,为安全的量子通信铺平道路。
5. **量子算法**:变分量子特征求解器(VQE)等新算法已成功应用于化学模拟,展示了量子计算的实际应用。
6. **混合量子-经典系统**:IBM 等公司正在开发量子-经典混合系统,利用经典计算来优化量子算法,从而提高性能。
这些项目表明该领域取得了快速进展,为实用量子计算的更广泛目标做出了贡献。
错误处理和验证
在最后一部分中,我们将在提示链中实现错误处理和验证,以使其更加健壮。# Define prompt templates
generate_prompt = PromptTemplate(
input_variables=["topic"],
template="生成一个与主题{topic}相关的 4 位数字。仅用数字回复,不需要其他文字。"
)
validate_prompt = PromptTemplate(
input_variables=["number", "topic"],
template="数字{number}是否真正与主题‘ {topic} ’相关?请回答‘是’或‘否’,并解释原因。"
)
def extract_number(text):
"""从给定的文本中提取一个 4 位数字。
参数:
文本(str):从中提取数字的文本。
返回:
str 或 None:提取的 4 位数字,如果未找到有效数字则返回 None。
"""
match = re.search(r'\b\d{4}\b', text)
return match.group() if match else None
def robust_number_generation(topic, max_attempts=3):
"""生成一个与主题相关的数字,并进行验证和错误处理。
参数:
topic(str):要生成数字的主题。max_attempts
(int):最大生成尝试次数。
返回:
str:经过验证的 4 位数字或错误消息。
"""
for attempt in range(max_attempts):
try:
response = (generate_prompt | llm).invoke({"topic": topic}).content
number = extract_number(response)
if not number:
raise ValueError(f"无法从响应中提取 4 位数字:{ response }")
# Validate the relevance
validation = (validate_prompt | llm).invoke({"number": number, "topic": topic}).content
if validation.lower().startswith("yes"):
return number
else:
print(f"尝试 {attempt + 1}: 数字 {number} 未经验证。 原因: {validation}")
except Exception as e:
print(f"尝试 {attempt + 1} 失败: {str(e)}")
return "多次尝试后仍无法生成有效号码。"
# Test the robust number generation
topic = "第二次世界大战"
result = robust_number_generation(topic)
print(f"主体 '{topic}'的最终结果: {result}")
主题“第二次世界大战”的最终结果:1945 年