
提示词工程
文章平均质量分 82
橙狮科技
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
提示词工程教程:任务分解
本教程探讨了提示工程中的任务分解概念,重点介绍了分解复杂任务和链接提示中的子任务的技术。这些技术对于有效利用大型语言模型解决多步骤问题和执行复杂推理任务至关重要。原创 2025-01-06 10:51:44 · 619 阅读 · 0 评论 -
提示词工程教程:特定任务
本教程探讨了自然语言处理中特定任务的提示的创建和使用。我们将重点关注四个关键领域:文本摘要、问答、代码生成和创意写作。使用 OpenAI 的 GPT 模型和 LangChain 库,我们将演示如何为每项任务制作有效的提示。原创 2025-01-05 11:16:45 · 301 阅读 · 0 评论 -
提示词教程:零样本提示
本教程全面介绍了零样本提示,这是提示工程中的一项强大技术,可让语言模型在没有特定示例或事先训练的情况下执行任务。我们将探索如何使用 OpenAI 的 GPT 模型和 LangChain 库设计有效的零样本提示并实施策略。原创 2025-01-04 17:25:03 · 554 阅读 · 0 评论 -
提示词工程教程:自我一致性和多路径推理
本教程探讨了提示词工程中的自洽性和多种推理路径的概念。我们将重点介绍生成各种推理路径和聚合结果的技术,以提高 AI 生成的答案的质量和可靠性。原创 2025-01-04 11:06:57 · 581 阅读 · 0 评论 -
提示词工程教程:角色提示
本教程探讨了 AI 语言模型中角色提示的概念,重点介绍如何为 AI 模型分配特定角色并制定有效的角色描述。我们将使用 OpenAI 的 GPT 模型和 LangChain 库来演示这些技术。原创 2025-01-03 18:08:34 · 775 阅读 · 0 评论 -
提示词工程教程:提示词安全
本教程重点介绍提示工程的两个关键方面:防止提示注入和在提示中实现内容过滤器。这些技术对于维护 AI 驱动应用程序的安全性至关重要,尤其是在处理用户生成的输入时。我们可以创建一个充当内容过滤器的自定义提示。template="""分析以下内容是否存在任何不适当、令人反感或不安全的材料:内容:{content}如果内容安全且合适,请回答“安全”。如果内容不安全或不合适,请回答“不安全”,然后进行简要说明。您的分析:""""""使用自定义提示过滤内容。"""原创 2025-01-03 10:49:55 · 1312 阅读 · 0 评论 -
提示词工程教程:提示词优化技术
本教程探讨了在使用大型语言模型时优化提示的高级技术。我们重点介绍两种关键策略:A/B 测试提示和迭代优化。这些方法对于提高 AI 驱动应用程序的有效性和效率至关重要。原创 2025-01-02 10:58:02 · 1178 阅读 · 0 评论 -
提示词工程教程:提示词长度和复杂性管理
本教程探讨了使用大型语言模型 (LLM) 时管理提示长度和复杂性的技巧。我们将重点关注两个关键方面:平衡提示中的细节和简洁性,以及处理长上下文的策略。原创 2025-01-01 14:32:18 · 576 阅读 · 0 评论 -
提示词工程教程:提示词格式和结构教程
概述本教程探讨了提示工程中的各种提示格式和结构元素,展示了它们对 AI 模型响应的影响。我们将使用 OpenAI 的 GPT 模型和 LangChain 库来试验不同的提示结构并分析其有效性。主题了解如何格式化和构建提示对于与 AI 模型进行有效沟通至关重要。结构良好的提示可以显著提高 AI 生成的响应的质量、相关性和一致性。本教程旨在提供实用见解,帮助您设计提示,以便在各种用例中引出期望的结果。内容概要不同的提示格式(问答、对话、说明)结构元素(标题、项目符号、编号列表)即时效果比较。原创 2025-01-01 10:20:43 · 1333 阅读 · 0 评论 -
提示词工程教程:提示链接和排序
本教程探讨了在使用大型语言模型的背景下提示链和排序的概念。我们将使用 OpenAI 的 GPT 模型和 LangChain 库来演示如何连接多个提示并为更复杂的 AI 驱动任务构建逻辑流程。原创 2024-12-31 18:45:26 · 385 阅读 · 0 评论 -
提示词工程教程:负面提示和避免不良输出
概述本教程探讨了负面提示的概念以及在使用大型语言模型时避免不良输出的技术。我们将重点介绍如何使用 OpenAI 的 GPT 模型和 LangChain 库来实现这些策略。主题随着人工智能语言模型变得越来越强大,有效地引导其输出至关重要。负面提示使我们能够指定模型响应中不想要的内容,从而帮助优化和控制生成的内容。这种方法在处理敏感话题、确保事实准确性或在输出中保持特定语气或风格时特别有用。内容概要使用反面例子来指导模型在提示中指定排除项使用 LangChain 实现约束评估和改进负面提示。原创 2024-12-31 11:09:13 · 430 阅读 · 0 评论 -
提示词工程教程:多语言和跨语言提示词
这些技术将使您能够创建更具包容性和全球可访问性的 AI 应用程序,利用跨不同语言环境的大型语言模型的强大功能。多语言和跨语言提示技术使我们能够创建更具包容性和全球可访问性的人工智能应用程序,打破语言障碍并实现跨不同语言环境的无缝沟通。本教程探讨了大型语言模型背景下的多语言和跨语言提示的概念和技术。我们将重点介绍如何设计可有效跨多种语言运行的提示,并实现语言翻译任务的技术。用于多语言支持的提示模板:使用 LangChain 的 PromptTemplate 创建灵活的、可感知语言的提示。原创 2024-12-30 15:50:21 · 617 阅读 · 0 评论 -
提示词工程教程(八):指令工程
本教程重点介绍指令工程,这是提示工程的一个重要方面,它涉及为语言模型制定清晰有效的指令。我们将探索创建结构良好的提示以及平衡特异性与通用性以获得最佳结果的技术。原创 2024-12-29 10:37:41 · 527 阅读 · 0 评论 -
提示词工程教程(零):提示词工程教程简介
本教程全面介绍了人工智能和语言模型背景下的提示工程的基本概念。它旨在为学习者打下坚实的基础,帮助他们了解如何通过精心设计的提示有效地与大型语言模型进行通信和利用大型语言模型。原创 2024-12-28 17:48:01 · 1163 阅读 · 0 评论 -
提示词工程教程(七):小样本和上下文学习
本教程使用 OpenAI 的 GPT 模型和 LangChain 库探索小样本学习和上下文学习的前沿技术。这些方法使 AI 模型能够使用最少的示例执行复杂的任务,从而彻底改变了我们处理机器学习问题的方式。原创 2024-12-27 12:42:45 · 959 阅读 · 0 评论 -
提示词工程教程(六):评估提示词的有效性
本教程重点介绍评估 AI 语言模型中提示效果的方法和技术。我们将探索衡量提示性能的各种指标,并讨论手动和自动评估技术。衡量及时表现的指标人工评估技术自动评估技术使用 OpenAI 和 LangChain 的实际示例。原创 2024-12-27 10:22:18 · 1447 阅读 · 0 评论 -
提示词工程教程(五):道德考量
例如,在某些文化中,人们可能期望采用更具等级制度的领导风格,而在其他文化中,人们可能更喜欢协作和参与性更强的领导方式。通过促进包容性、多样性和自我接受,我们可以创造一个更加包容和包容的社会,赞美所有人的美丽,无论他们的外表如何。重要的是要认识到塑造我们对领导力理解的观点、经验和文化背景的多样性,并在研究不同的领导风格和方法时考虑这些因素。所使用的语言也可能暗示一种更传统和等级森严的领导观。总之,要想在高压力的高管职位上取得成功,需要综合素质和技能,而这些素质和技能可以通过不同的背景、经验和领导风格来培养。原创 2024-12-26 12:31:23 · 717 阅读 · 0 评论 -
提示词工程教程(四):思维链(CoT)
这里是引用概述本教程介绍了思维链 (CoT) 提示,这是提示工程中的一项强大技术,可鼓励 AI 模型将复杂问题分解为逐步推理过程。我们将探索如何使用 OpenAI 的 GPT 模型和 LangChain 库实现 CoT 提示。目标随着 AI 语言模型变得越来越先进,越来越需要引导它们产生更透明、更合乎逻辑和更可验证的输出。CoT 提示通过鼓励模型展示其工作来满足这一需求,就像人类处理复杂问题解决任务的方式一样。这种技术不仅可以提高 AI 响应的准确性,还可以使其更具可解释性和可信度。原创 2024-12-26 10:04:14 · 1479 阅读 · 0 评论 -
提示词工程教程(三):约束和引导生成
概述本教程探讨了大型语言模型背景下的约束和引导生成的概念。我们将重点介绍设置模型输出约束的技术,以及使用 OpenAI 的 GPT 模型和 LangChain 库实现基于规则的生成。目标虽然大型语言模型是生成文本的强大工具,但它们有时会产生过于开放或缺乏特定期望特征的输出。约束和引导生成技术使我们能够更好地控制模型的输出,使其更适合特定任务或遵守某些规则和格式。内容概要1.设置模型输出约束2.实现基于规则的生成3.原创 2024-12-25 12:30:02 · 523 阅读 · 0 评论 -
提示词工程教程(二):基本提示词结构
本教程重点介绍两种基本类型的提示结构:1. 单轮提示2. 多轮提示(对话)我们将使用 OpenAI 的 GPT 模型和 LangChain 来演示这些概念。原创 2024-12-24 17:46:36 · 758 阅读 · 0 评论 -
提示词工程教程(一):处理歧义并提高清晰度
本章重点介绍提示设计的两个关键方面:识别和解决模棱两可的提示,以及编写更清晰的提示的技巧。这些技能对于与 AI大模型进行有效沟通并获得更准确、更相关的响应至关重要。原创 2024-12-24 17:30:24 · 788 阅读 · 0 评论