提示词工程教程:提示词长度和复杂性管理

概述

本教程探讨了使用大型语言模型 (LLM) 时管理提示长度和复杂性的技巧。我们将重点关注两个关键方面:平衡提示中的细节和简洁性,以及处理长上下文的策略。

主题

有效的提示工程通常需要在为模型提供足够的上下文以理解任务与保持提示简洁以提高效率之间找到适当的平衡。此外,许多现实世界的应用程序涉及处理长文档或复杂的多步骤任务,这可能会超出 LLM 的上下文窗口。学习管理这些挑战对于构建强大的 AI 应用程序至关重要。

内容概要

  1. 在提示中平衡细节和简洁性
  2. 处理长上下文的策略
  3. 使用 OpenAI 的 GPT 模型和 LangChain 的实际示例

教案

我们首先会研究如何编写提示,使其提供足够的背景信息,避免不必要的冗长。这包括使用清晰、简洁的语言,以及利用提示模板保持一致性。

接下来,我们将探讨处理长上下文的策略,例如:

  • 分块:将长文本分解成更小、更易于管理的部分
  • 总结:浓缩长文,保留关键信息
  • 迭代处理:通过多个 API 调用处理复杂任务

在整个教程中,我们将使用实际示例来演示这些概念,并通过 LangChain 库利用 OpenAI 的 GPT 模型。

结论

在本教程结束时,您将对如何有效地管理提示长度和复杂性有深入的理解。这些技能将使您能够创建更高效、更强大的 AI 应用程序,能够处理各种文本处理任务。

设置

首先,让我们导入必要的库并设置我们的环境。
import os
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.summarize import load_summarize_chain

# Load environment variables
from dotenv import load_dotenv
load_dotenv()

# Set up OpenAI API key
os.environ["OPENAI_API_KEY"] = os.getenv('OPENAI_API_KEY')

# Initialize the language model
llm = ChatOpenAI(model="gpt-4o-mini")

print("设置完成!")

平衡细节和简洁

首先,让我们来研究如何在提示中平衡细节和简洁。我们将比较详细提示和简洁提示的答案。
# 详细提示
detailed_prompt = PromptTemplate(
    input_variables=["topic"],
    template="""请对{topic}进行全面解释。包括其定义、
    历史背景、关键组成部分、实际应用以及任何相关示例。
    此外,讨论围绕该主题的任何争议或辩论,并提及潜在的
    未来发展或趋势。"""
)

# 简洁提示
concise_prompt = PromptTemplate(
    input_variables=["topic"],
    template="简要解释{topic}及其主要重要性。"
)

topic = "人工智能"

print("详细答复:")
print(llm.invoke(detailed_prompt.format(topic=topic)).content)

print("\n简洁答复:")
print(llm.invoke(concise_prompt.format(topic=topic)).content)
详细答复:
### 人工智能全面讲解

#### 定义

人工智能 (AI) 是指在经过编程以像人类一样思考和学习的机器中模拟人类智能。它涵盖一系列技术和方法,使计算机能够执行通常需要人类智能的任务,例如理解自然语言、识别模式、解决问题和做出决策。

历史背景

人工智能的概念可以追溯到古代历史,其中有关于机器人和智能生物的神话和故事。然而,人工智能的正式研究始于 20 世纪中叶:

1. **20 世纪 50 年代 - 人工智能诞生**:“人工智能”一词于 1956 年在达特茅斯会议上首次提出,会议由约翰·麦卡锡、马文·明斯基、纳撒尼尔·罗切斯特和克劳德·香农组织。早期工作侧重于符号方法和问题解决。

2. **20 世纪 60 年代-早期程序**:出现了模仿对话的 ELIZA 等程序,以及在有限的环境下理解自然语言的 SHRDLU 等程序。

3. **20 世纪 70 年代-第一个人工智能寒冬**:由于未满足预期,进展放缓,导致资金和兴趣减少,被称为“人工智能寒冬”。

4. **20 世纪 80 年代-通过专家系统复兴**:使用基于规则的推理来解决特定问题的专家系统的发展重新引起了人们的兴趣。

5. **20 世纪 90 年代 - 机器学习**:焦点转向机器学习,即计算机从数据中学习。1997 年,IBM 的“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫,标志着一个重要的里程碑。

6. **2000 年代至今 - 深度学习和大数据**:计算能力的进步、大数据集的可用性以及算法的改进导致了深度学习的兴起。这个时代见证了计算机视觉、自然语言处理和强化学习的重大突破。

关键组件

1. **机器学习 (ML)**:人工智能的一个子集,它使系统能够从数据中学习并随着时间的推移不断改进,而无需明确编程。技术包括监督学习、无监督学习和强化学习。

2. **自然语言处理 (NLP)**:机器理解、解释和响应人类语言的能力。示例包括聊天机器人、语言翻译和情感分析。

3. **计算机视觉**:根据来自世界的视觉数据进行解释和决策的能力。应用包括面部识别、自动驾驶汽车和医学图像分析。

4. **机器人**:人工智能与机器人的交叉涉及创造能够自主执行任务的机器。例子包括制造机器人和无人机。

5. **专家系统**:模拟特定领域人类专家的决策能力的人工智能程序。

实际应用

人工智能已经改变了各行各业:

- **医疗保健**:人工智能算法协助诊断疾病、分析医学图像和个性化治疗方案。
- **金融**:人工智能系统增强了欺诈检测、算法交易和风险管理。
- **交通**:自动驾驶汽车和交通管理系统利用人工智能来提高安全性和效率。
- **零售**:AI 用于库存管理、个性化推荐和客户服务聊天机器人。
- **娱乐**:Netflix 和 Spotify 等平台的内容推荐系统使用 AI 来定制用户体验。

争议和辩论

1. **道德问题**:隐私、监控、人工智能算法偏见以及可能取代工作岗位等问题引发了道德问题。例如,有偏见的算法可能导致招聘或执法方面的歧视行为。

2. **人工智能安全**:人工智能系统可能采取不可预测或有害的行为,这引发了关于如何确保人工智能与人类价值观和安全相一致的争论。

3. **自主武器**:人工智能在军事应用领域的发展引发了人们对自主武器系统的责任和道德影响的担忧。

4. **监管**:政府和组织正在努力解决如何在促进创新的同时有效地监管人工智能技术的问题。

#### 未来发展和趋势

1. **可解释的人工智能(XAI)**:随着人工智能系统变得越来越复杂,其决策过程的透明度和可解释性的需求也日益增长。

2. **通用人工智能**:人们仍在继续研究通用人工智能 (AGI) 的开发,它将拥有理解和学习人类能够完成的任何智力任务的能力。

3. **人机协作**:越来越注重创建增强人类能力而不是取代人类能力的系统。

4. **可持续发展中的人工智能**:利用人工智能进行气候建模、资源管理和优化能源消耗。

5. **与物联网的融合**:人工智能与物联网 (IoT) 的融合有望推动各个领域的设备更加智能、系统更加高效。

6. **法规和政策发展**:随着人工智能技术的发展,人们可能会越来越多地呼吁建立监管框架来解决道德问题并确保负责任地使用。

### 结论

人工智能是一个快速发展的领域,对社会有着深远的影响。虽然它在各个领域都带来了巨大的好处,但也带来了需要仔细考虑的挑战。随着技术的不断进步,在创新、道德和监管方面采取平衡的方法对于塑造人工智能的未来至关重要。

简洁的回应:
人工智能 (AI) 是指在机器中模拟人类智能,这些机器经过编程可以像人类一样思考和学习。这涵盖了一系列技术,包括机器学习、自然语言处理、计算机视觉和机器人技术,这些技术使计算机能够执行通常需要人类智能才能完成的任务。

人工智能的主要重要性在于它能够提高各个领域的效率和生产力。它可以快速分析大量数据,自动执行重复性任务,改善决策,并提供个性化体验。人工智能应用在医疗保健(诊断疾病)、金融(欺诈检测)、交通运输(自动驾驶汽车)和客户服务(聊天机器人)等领域,使流程更加高效,并实现可以显着改善生活质量的创新。

即时平衡分析

让我们分析详细提示和简洁提示之间的差异,并讨论找到正确平衡的策略。
analysis_prompt = PromptTemplate(
    input_variables=["detailed_response", "concise_response"],
    template="""比较以下两个关于人工智能的回应:

详细响应:
{detailed_response}

简洁的回应:
{concise_response}

分析以下方面的差异:
1. 信息覆盖范围
2. 清晰度和重点
3. 每种响应类型的潜在用例

然后,提出平衡提示中细节和简洁性的策略。"""
)

detailed_response = llm.invoke(detailed_prompt.format(topic=topic)).content
concise_response = llm.invoke(concise_prompt.format(topic=topic)).content

analysis = llm.invoke(analysis_prompt.format(
    detailed_response=detailed_response,
    concise_response=concise_response
)).content

print(analysis)
### 两个回应的分析

#### 1. 信息覆盖
- **详细回复**:此回复全面概述了人工智能。它包括定义、历史背景、关键组成部分、实际应用、相关示例、争议和潜在的未来发展。它涵盖了广泛的主题,适合寻求深入了解和理解人工智能的读者。
  
- **简明回应**:简明回应对人工智能进行了简要定义,并强调了其重要性和潜在影响。它涉及人工智能的类别并总结了其在各个行业的应用。但是,它缺乏详细回应所提供的深度,省略了历史背景、具体示例以及对争议和未来发展的讨论。

#### 2. 清晰度和焦点
- **详细回复**:虽然详细回复包含丰富的信息,但由于内容过于广泛,可能会让一些读者不知所措。将回复分成几部分有助于清晰理解,但大量的信息可能会导致不熟悉主题的人认知超负荷。

- **简洁的回复**:简洁的回复清晰而有重点,以直截了当的方式传递重要信息。它有效地传达了人工智能的核心概念,没有不必要的复杂性。然而,它可能会让读者想要了解更多细节,尤其是那些不熟悉人工智能及其含义的读者。

#### 3. 每种响应类型的潜在用例
- **详细回复**:此回复适用于:
  - 需要深入了解人工智能的学术环境或研究目的。
  - 需要全面了解历史发展、技术细节和道德考虑的人工智能领域的专业人士。
  - 用于教授更高层次的人工智能概念的教育材料。

- **简洁的回应**:此回应适用于:
  - 寻求快速了解 AI 概念的普通观众或新手。
  - 寻求高层次理解人工智能对行业影响的商业专业人士。
  - 媒体文章或营销材料需要简洁的解释,而无需深入探讨技术细节。

### 平衡提示中细节和简洁性的策略
1. **定义受众**:根据目标受众对主题的熟悉程度来定制响应。对于专家受众,请包含更详细的信息;对于外行,请坚持关键概念和应用。

2. **使用分层信息**:从简明的概述开始,然后提供深入探究特定部分的选项。这可能意味着首先总结要点,然后为感兴趣的人提供更详细的解释链接。

3. **优先考虑要点**:确定并关注主题的最关键方面,消除不太相关的细节。使用项目符号或编号列表以保持清晰简洁。

4. **结合视觉辅助**:使用图表、流程图或信息图表以视觉方式传达复杂信息,无需冗长的解释即可更清楚地理解。

5. **鼓励提问**:如果读者需要澄清或更多有关特定观点的细节,请他们提问,从而创建一种能够根据需要解决细节和简洁性问题的动态互动。

6. **迭代改进**:创建包含简洁和详细部分的初稿,然后根据反馈改进文本,仅关注清晰度和基本信息。

通过运用这些策略,人们可以有效地平衡各种情况下对详细信息的需求和对简洁性的要求。

处理长上下文的策略

现在,让我们探索处理长上下文的策略,长上下文通常超出语言模型的标记限制。

1. 分块

分块涉及将长文本分成更小、更易于管理的部分。让我们使用一段长文本来演示这一点。
# [长文介绍人工智能,它的历史、应用、未来前景……]

long_text = """
人工智能 (AI) 是计算机科学的一个分支,旨在创建能够模拟人类认知过程的智能机器。
人工智能领域有着悠久的历史,可以追溯到 20 世纪 50 年代,其关键里程碑包括开发第一个神经网络和专家系统。
人工智能涵盖了广泛的子领域,包括机器学习、自然语言处理、计算机视觉和机器人技术。
人工智能的实际应用包括语音识别、图像分类、自动驾驶汽车和医疗诊断。
人工智能有可能彻底改变许多行业,从医疗保健和金融到交通和娱乐。
然而,围绕人工智能的争论和争议仍在继续,例如对工作流失、算法偏见以及自主系统的伦理影响的担忧。
展望未来,人工智能的未来有望在可解释的人工智能、人工智能伦理和人机协作等领域取得进步。
人工智能与区块链、量子计算和生物技术等其他技术的交集可能会塑造该领域的未来。
但随着人工智能的不断发展,必须考虑这些技术的社会影响和伦理影响。
人工智能研究人员和开发人员面临的一个关键挑战是平衡创新和责任,确保人工智能造福
整个社会,同时将潜在风险降至最低。
如果管理得当,人工智能有可能以我们难以想象的方式改变我们的世界。
尽管人工智能的未来尚不确定,但有一点是明确的:人工智能的影响将是深远的。
"""

# 初始化文本分割器
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000,
    chunk_overlap=200,
    length_function=len
)

# Split the text into chunks
chunks = text_splitter.split_text(long_text)

print(f"块的数量: {len(chunks)}")
print(f"第一部分: {chunks[0][:200]}...")
块数:2
第一部分:人工智能(AI)是计算机科学的一个分支,旨在创造能够模拟人类认知过程的智能机器。
人工智能领域有着丰富的历史,可以追溯到……

2. 总结

摘要可用于压缩长文本,同时保留关键信息。让我们使用 LangChain 的摘要链来演示这一点。
from langchain.docstore.document import Document

# Convert text chunks to Document objects
doc_chunks = [Document(page_content=chunk) for chunk in chunks]

# Load the summarization chain
chain = load_summarize_chain(llm, chain_type="map_reduce")

# Summarize the long text
summary_result = chain.invoke(doc_chunks)

print("总结:")
print(summary_result['output_text'])
总结:
人工智能 (AI) 是一门计算机科学,成立于 20 世纪 50 年代,旨在创造能够复制人类认知过程的机器。它涵盖机器学习和自然语言处理等领域,应用于语音识别、自动驾驶汽车和医学诊断。虽然人工智能具有变革潜力,但它也引发了人们对工作岗位流失、算法偏见和道德问题的担忧。受区块链和量子计算等技术的影响,可解释的人工智能、道德和人机协作有望在未来取得进步。在创新与责任之间取得平衡对于最大限度地发挥人工智能的优势并最大限度地降低风险至关重要,因为它对社会的影响仍然巨大且不确定。

3. 迭代处理

对于需要多个步骤的复杂任务,我们可以使用迭代处理。让我们通过一个多步骤分析任务来演示这一点。
def iterative_analysis(text, steps):
    """
    对给定的文本执行迭代分析。
    
    参数:
    text (str): 要分析的文本。
    steps (list): 要执行的分析步骤列表。
    
    Returns:
    str: 最终分析结果。
    """
    result = text
    for step in steps:
        prompt = PromptTemplate(
            input_variables=["text"],
            template=f"Analyze the following text. {step}\n\nText: {{text}}\n\nAnalysis:"
        )
        result = llm.invoke(prompt.format(text=result)).content
    return result

analysis_steps = [
    "确定讨论的主要主题。",
    "总结每个主题的要点。",
    "根据分析提供简要结论。"
]

final_analysis = iterative_analysis(long_text, analysis_steps)
print("最终分析:")
print(final_analysis)
最终分析:
本文全面概述了人工智能 (AI),涵盖了其定义、历史发展、各个子领域、跨不同行业的应用以及相关挑战和道德考虑。

重点包括将人工智能确定为计算机科学中一个关键领域,旨在模仿人类的认知功能,以及追溯其自 1950 年代以来的发展的历史时间表。文本讨论了机器学习和自然语言处理等重要子领域,同时详细介绍了医疗保健和交通等领域的实际应用。

此外,它还探讨了人工智能的社会影响,包括工作岗位流失和算法偏见,强调在开发和部署人工智能时需要考虑道德问题。未来前景部分重点介绍了预期的进步以及人工智能与新兴技术的融合,同时也承认了未来的不确定性。

**结论**:本文有效地概括了人工智能的多面性,强调了其变革潜力以及采取兼顾技术进步和道德责任的平衡方法的必要性。随着人工智能的不断发展,其对社会的影响将是深远的,需要持续的对话和谨慎的管理。

管理提示长度和复杂性的实用技巧

最后,让我们总结一些在实际应用中管理提示长度和复杂性的实用技巧。
tips_prompt = """
根据我们探索的管理提示长度和复杂性的示例和策略,
为使用大型语言模型的开发人员提供 5 条实用技巧列表。
每条技巧都应简洁且可操作。
"""

tips = llm.invoke(tips_prompt).content
print(tips)
以下是针对使用大型语言模型的开发人员的五个实用技巧:

1. **分解任务**:将复杂的查询分解为更小、更易于管理的任务。这可以简化提示,并允许模型专注于特定方面,从而提高准确性和相关性。

2. **使用清晰的指令**:使用明确而简洁的指令制定提示。清楚地说明您希望模型执行的操作,以最大限度地减少歧义并提高性能。

3. **限制上下文长度**:保持提供给模型的上下文简洁。仅使用必要的信息,以防止模型不堪重负,并保持对主要任务的关注。

4. **迭代和优化**:测试不同的提示变化并分析结果。根据模型响应迭代优化提示,以便随着时间的推移获得更好的结果。

5. **利用系统消息**:利用系统消息来设定响应的基调和风格。在开始时提供明确的指导方针可以帮助模型的输出与您的期望保持一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值