题目描述:
题解 :
从给定的坐标[sr,sc]开始,判断其上下左右四个位置原来的颜色是否与[sr,sc]相同,相同则将其染成新的颜色,然后再以该位置为起点,判断其周围四个位置。可以采用深度优先和广度优先梁总方法。
参考:https://segmentfault.com/a/1190000023648280
题解一:深度优先搜索
如果image[sr,sc]值和newColor相等,则不用做任何处理。 1.将给定位置的初始颜色记录为oricolor,防止之后被更改为newColor。 2.定义dfs函数,对位置[i,j]进行处理,首先判断image[i][j]是否和oricolor相等,相等则将其修改为newColor,然后分别对它上下左右四个位置调用dfs函数。 class Solution(object): def floodFill(self, image, sr, sc, newColor): if image[sr][sc]==newColor: return image direction = [(0,-1),(0,1),(-1,0),(1,0)] oricolor = image[sr][sc] def dfs(i,j): if image[i][j] == oricolor: image[i][j] = newColor for dx,dy in direction: x = i+dx y = j+dy if 0<=x<len(image) and 0<=y<len(image[0]): dfs(x,y) dfs(sr,sc) return image
题解二:广度优先搜索
使用一个队列实现:
定义一个bfs函数,需要染色的位置为[posx,posy]
1.定义一个队列myq,将[posx,posy]加入队列。
2.每次从队列中取出一个元素[x,y],将image[x][y]更新为newColor,然后将该位置的上下左右位置加入队列(需要进行边界判断以及位置的初始颜色是否与oricolor相同)
class Solution(object): def floodFill(self, image, sr, sc, newColor): if image[sr][sc] == newColor: return image oricolor = image[sr][sc] direction = [(-1,0),(1,0),(0,-1),(0,1)] def bfs(posx,posy): myq = deque() myq.append([posx,posy]) while myq: x,y = myq.popleft() image[x][y] = newColor for dx,dy in direction: nx = x+dx ny = y+dy if 0<=nx<len(image) and 0<=ny<len(image[0]) and image[nx][ny]==oricolor: myq.append([nx,ny]) bfs(sr,sc) return image
广度优先和深度优先的方法都是从位置[x,y]开始,对其上下左右四个位置进行判断,然后再处理这四个相邻位置的相邻位置。
区别在于,深度优先搜索中,获得一个[x,y]的相邻位置后,马上以该位置作为中心,对它的相邻位置进行处理,这个相邻位置处理完成后,再处理下一个相邻节点。
广度优先搜索中,先处理完当前节点的全部四个相邻位置之后,再以这些相邻节点为中心向外处理。
2021.11.05:
1.最近在学习回溯算法,发现力扣
这篇讲解中把这道题划分为回溯第二个大题型flood fill,其实也可以按照回溯的思想来理解:
初始节点是输入的坐标[sr,sc],然后下面的分支可以在[sr,sc]上下左右四个坐标中选择,如果相邻的坐标超出image范围,或者初始的颜色和[sr,sc]位置不同,就不用展开搜索,相当于剪枝,但实现方法和DFS基本一致。
2.如果增加一个visited数组记录搜索处理过的坐标,在进行搜索的时候先判断当前位置是否在visited中,如果未被处理再展开搜索。