leetcode 733. 图像渲染 python

题目描述: 

题解 :

从给定的坐标[sr,sc]开始,判断其上下左右四个位置原来的颜色是否与[sr,sc]相同,相同则将其染成新的颜色,然后再以该位置为起点,判断其周围四个位置。可以采用深度优先和广度优先梁总方法。

参考:​​​​​​https://segmentfault.com/a/1190000023648280

题解一:深度优先搜索

如果image[sr,sc]值和newColor相等,则不用做任何处理。
1.将给定位置的初始颜色记录为oricolor,防止之后被更改为newColor。
2.定义dfs函数,对位置[i,j]进行处理,首先判断image[i][j]是否和oricolor相等,相等则将其修改为newColor,然后分别对它上下左右四个位置调用dfs函数。
class Solution(object):
    def floodFill(self, image, sr, sc, newColor):
        if image[sr][sc]==newColor:
            return image
        direction = [(0,-1),(0,1),(-1,0),(1,0)]
        oricolor = image[sr][sc]
        def dfs(i,j):
            if image[i][j] == oricolor:
                image[i][j] = newColor
                for dx,dy in direction:
                    x = i+dx
                    y = j+dy
                    if 0<=x<len(image) and 0<=y<len(image[0]):
                        dfs(x,y)
        dfs(sr,sc)
        return image

 题解二:广度优先搜索

使用一个队列实现:

定义一个bfs函数,需要染色的位置为[posx,posy]

1.定义一个队列myq,将[posx,posy]加入队列。

2.每次从队列中取出一个元素[x,y],将image[x][y]更新为newColor,然后将该位置的上下左右位置加入队列(需要进行边界判断以及位置的初始颜色是否与oricolor相同)

class Solution(object):
    def floodFill(self, image, sr, sc, newColor):
        if image[sr][sc] == newColor:
            return image
        oricolor = image[sr][sc]
        direction = [(-1,0),(1,0),(0,-1),(0,1)]
        def bfs(posx,posy):
            myq = deque()
            myq.append([posx,posy])
            while myq:
                x,y = myq.popleft()
                image[x][y] = newColor
                for dx,dy in direction:
                    nx = x+dx
                    ny = y+dy
                    if 0<=nx<len(image) and 0<=ny<len(image[0]) and image[nx][ny]==oricolor:
                        myq.append([nx,ny])
        bfs(sr,sc)
        return image

 

 广度优先和深度优先的方法都是从位置[x,y]开始,对其上下左右四个位置进行判断,然后再处理这四个相邻位置的相邻位置。

区别在于,深度优先搜索中,获得一个[x,y]的相邻位置后,马上以该位置作为中心,对它的相邻位置进行处理,这个相邻位置处理完成后,再处理下一个相邻节点。

广度优先搜索中,先处理完当前节点的全部四个相邻位置之后,再以这些相邻节点为中心向外处理。

2021.11.05:

1.最近在学习回溯算法,发现​​​​​​力扣

这篇讲解中把这道题划分为回溯第二个大题型flood fill,其实也可以按照回溯的思想来理解:

初始节点是输入的坐标[sr,sc],然后下面的分支可以在[sr,sc]上下左右四个坐标中选择,如果相邻的坐标超出image范围,或者初始的颜色和[sr,sc]位置不同,就不用展开搜索,相当于剪枝,但实现方法和DFS基本一致。

 2.如果增加一个visited数组记录搜索处理过的坐标,在进行搜索的时候先判断当前位置是否在visited中,如果未被处理再展开搜索。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值