Tensorflow学习笔记:基础篇(4)——Mnist手写集改进版(添加隐藏层)

本文介绍了在Tensorflow中通过添加隐藏层改进Mnist手写数字识别模型,从之前的简单两层网络提升到四层网络,包含两个隐藏层,隐藏层激活函数使用tanh。经过20次迭代,模型准确率从0.91提升到0.95。
摘要由CSDN通过智能技术生成

Tensorflow学习笔记:基础篇(4)——Mnist手写集改进版(添加隐藏层)


前序

— 前文中,我们的初始版本实现了一个非常简单的两层全连接网络来完成MNIST数据的分类问题,输入层784个神经元,输出层10个神经元,最终迭代计算20次,准确率在0.91左右,本文我们采取添加隐藏层的方法进行训练,看看效果如何
Reference:前文博客:Mnist手写集初始版本


计算流程

1、数据准备
2、准备好placeholder
3、初始化参数/权重
4、计算预测结果
5、计算损失值
6、初始化optimizer
7、指定迭代次数,并在session执行graph

代码示例

1、数据准备
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# 每个批次送100张图片
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
2、准备好placeholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
3、初始化参数/权重

此处我们添加了两个隐藏层,分别有500和300个神经元,这样包括输入输出层,总共4层神经网络
其中:
(1)隐藏层初始化函数建议使用tf.truncated_normal()(截短的随机数)类型,而非前文中的tf.zero()(初始化为零)类型
(2)中间层的激活函数,本文使用tanh(双曲正切函数&#x

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值