Tensorflow学习笔记:基础篇(4)——Mnist手写集改进版(添加隐藏层)
前序
— 前文中,我们的初始版本实现了一个非常简单的两层全连接网络来完成MNIST数据的分类问题,输入层784个神经元,输出层10个神经元,最终迭代计算20次,准确率在0.91左右,本文我们采取添加隐藏层的方法进行训练,看看效果如何
Reference:前文博客:Mnist手写集初始版本
计算流程
1、数据准备
2、准备好placeholder
3、初始化参数/权重
4、计算预测结果
5、计算损失值
6、初始化optimizer
7、指定迭代次数,并在session执行graph
代码示例
1、数据准备
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次送100张图片
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
2、准备好placeholder
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
3、初始化参数/权重
此处我们添加了两个隐藏层,分别有500和300个神经元,这样包括输入输出层,总共4层神经网络
其中:
(1)隐藏层初始化函数建议使用tf.truncated_normal()(截短的随机数)类型,而非前文中的tf.zero()(初始化为零)类型
(2)中间层的激活函数,本文使用tanh(双曲正切函数&#x