程序设计思维 week2 作业题

程序设计思维作业 week2

本次作业的两个题都是BFS的典型应用。

Problem A :Maze

1.题目概述

东东有一张地图,想通过地图找到妹纸。地图显示,0表示可以走,1表示不可以走,左上角是入口,右下角是妹纸,这两个位置保证为0。既然已经知道了地图,那么东东找到妹纸就不难了,请你编一个程序,写出东东找到妹纸的最短路线。

2.Input

输入是一个5 × 5的二维数组,仅由0、1两数字组成,表示法阵地图。

3.Output

输出若干行,表示从左上角到右下角的最短路径依次经过的坐标,格式如样例所示。数据保证有唯一解。

4.Sample

sample input
0 1 0 0 0
0 1 0 1 0
0 1 0 1 0
0 0 0 1 0
0 1 0 1 0
sample output
(0, 0)
(1, 0)
(2, 0)
(3, 0)
(3, 1)
(3, 2)
(2, 2)
(1, 2)
(0, 2)
(0, 3)
(0, 4)
(1, 4)
(2, 4)
(3, 4)
(4, 4)

5.整体思路

思路比较简单,利用栈来模拟BFS过程,将成功首先到达终点的一支保存在栈中,然后利用另一个栈来进行倒序输出。

6.代码

#include<iostream>
#include<stack>
using namespace std;
//记录点的坐标
class point
{
public:
    point(int x,int y)
    {
        _x=x;
        _y=y;
    }
    void output()
    {
        cout<<'('<<_x-1<<','<<' '<<_y-1<<')'<<endl;
    }
public:
    int _x;
    int _y;

};

int _dx[]={1,0,0,-1};
int _dy[]={0,-1,1,0};
stack<point> track;
int a[7][7];
int main()
{
    //初始化
    for(int i=0;i<7;i++)
    {
        for(int j=0;j<7;j++)
        {
            if((i*j==0)||i==6||j==6)
                a[i][j]=1;
            else cin>>a[i][j];
        }
    }
    //输入起点
    point start(1,1);
    point terminate(5,5);
    track.push(start);
    //判断终点条件
    while(!(track.top()._x==5&&track.top()._y==5))
    {
        point now=track.top();
        a[now._x][now._y]=1;
        int i;
        //BFS过程
        for(i=0;i<4;i++)
        {
            int new_x=now._x+_dx[i];
            int new_y=now._y+_dy[i];
            if(a[new_x][new_y]!=1)
            {
                a[new_x][new_y]=1;
                track.push({new_x, new_y});
                break;
            }
        }
        if(i==4) track.pop();
    }
    int size=track.size();
    stack<point> newtrack;
    for(int k=0;k<size;k++)
    {
        point n(track.top()._x,track.top()._y);
        track.pop();
        newtrack.push(n);
    }
    for(int i=0;i<size;i++)
    {
        newtrack.top().output();
        newtrack.pop();
    }
    return 0;
}

Problem B :Pour Water

1.题目概述

倒水问题 “fill A” 表示倒满A杯,"empty A"表示倒空A杯,“pour A B” 表示把A的水倒到B杯并且把B杯倒满或A倒空。

2. Sample inout and output

Input

输入包含多组数据。每组数据输入 A, B, C 数据范围 0 < A <= B 、C <= B <=1000 、A和B互质。

Sample Input
2 7 5
2 7 4
Output

你的程序的输出将由一系列的指令组成。这些输出行将导致任何一个罐子正好包含C单位的水。每组数据的最后一行输出应该是“success”。输出行从第1列开始,不应该有空行或任何尾随空格。

Sample Output
fill B
pour B A
success 
fill A
pour A B
fill A
pour A B
success

3.整体思路及代码

本题还是BFS的应用,将problem A 中的上下左右移动外扩操作替换为这里的倒满,倒空,A(B)倒给B(A)。通过map的使用可以记录一种状态的前一种状态的情况。然后根据两种状态之间的差别来确定这一步具体是做了怎么的操作。

#include<iostream>
#include<queue>
#include<map>
using namespace std;

struct Status
{
    int a, b;
    bool operator<(const Status &s) const
    {
        return a!=s.a ? a<s.a : b<s.b;
    }
};

/* 递归输出方案 */
void print(Status &p,map<Status, Status> from)
{
    if ( from.find(p) == from.end())
    {
        //cout<<"success"<<endl;
        return ;
    }
    if(p.a == 0&&p.b==0)
    {
        return ;
    }
    print(from[p],from); // 递归
    int _a=from[p].a;
    int _b=from[p].b;
    if(p.a!=_a)
    {
        if(p.a>_a)
        {
            if(p.b<_b)
                cout<<"pour B A"<<endl;
            else
                cout<<"fill A"<<endl;
        } else{
            if(p.b>_b)
                cout<<"pour A B"<<endl;
            else
                cout<<"empty A"<<endl;
        }
    } else{
        //p.a==_a
        if(p.b>_b)
            cout<<"fill B"<<endl;
        else
            cout<<"empty B"<<endl;
    }
    //printf("-><%d,%d>",  p.a, p.b);
}

void refresh(Status &s, Status &t,map<Status, Status> &from,queue<Status> &Q)
{
    if ( from.find(t) == from.end() )
    { // 特判合法,加入队列
        from[t] = s;
        Q.push(t);
    }
}

void bfs(int A, int B, int C,map<Status, Status> from,queue<Status> &Q)
{
    // 起点, 两杯水都空
    Status s,t;
    s.a=0; s.b=0;
    Q.push(s);

    while (!Q.empty())
    {
        // 取队首
        s = Q.front();
        Q.pop();
        // 特判到达终点
        if (s.a == C || s.b == C) {
            print(s,from); // 输出方案
            return;
        }

        // 倒空 a 杯的水
        if (s.a > 0) {
            t.a = 0;  // 倒空
            t.b = s.b;// b 杯不变
            refresh(s, t,from,Q);
        }

        // 同理,倒空 b 杯的水
        if (s.b > 0) {
            t.b = 0;  // 倒空
            t.a = s.a;// a 杯不变
            refresh(s, t,from,Q);
        }

        // a 杯未满,续满 a 杯
        if (s.a < A)
        {
            // 续满 a 杯
            t.a = A;
            t.b = s.b;
            refresh(s, t,from,Q);

            // 考虑倒入
            if (s.b != 0)
            {
                if (s.a + s.b <= A)
                {
                    t.a = s.a + s.b;
                    t.b = 0;
                    refresh(s, t,from,Q);
                } else
                {
                    t.a = A;
                    t.b = s.a + s.b - A;
                    refresh(s, t,from,Q);
                }
            }
        }

        // 同理,b 杯未满,续满 b 杯
        if (s.b < B)
        {
            t.a = s.a;
            t.b = B;
            refresh(s, t,from,Q);
            if (s.a != 0)
            {
                if (s.a + s.b <= B)
                {
                    t.a = 0;
                    t.b = s.a + s.b;
                    refresh(s, t,from,Q);
                } else
                {
                    t.a = s.a + s.b - B;
                    t.b = B;
                    refresh(s, t,from,Q);
                }
            }
        }
    }
    printf("-1\n");
}
int main()
{
    int a;
    while (cin>>a) {
        queue<Status> Q;
        map<Status, Status> from;
        int b,c;
        cin>>b;
        cin>>c;
        bfs(a, b, c,from,Q);
        cout<<"success"<<endl;
    }
    return 0;
}
### 关于山东大学程序设计实验 Week5 的资料 对于山东大学程序设计实验 Week5 的相关内容,虽然未直接提及具体参考资料[^1] 或[^2] 中涉及 Week5 的部分,但从已知的 Week8 和 Week14 的描述来看,可以推测 Week5 可能也围绕算法基础展开。 通常情况下,Week5 的任务可能集中在以下几个方面: #### 1. **动态规划初步** 动态规划是一种重要的算法思想,在许多高校的教学计划中,Week5 左右会引入动态规划的基础概念。学生可能会被要求完成一些经典的动态规划问题,例如: - 最长公共子序列 (LCS)[^3] - 背包问题 (0/1背包、完全背包)[^4] #### 2. **贪心算法的应用** 如果课程进度稍慢,Week5 还可能是关于贪心算法的内容。常见的练习题包括: - 区间调度问题 - 活动选择问题 #### 3. **代码提交平台** 学生可以通过 Git 获取作业模板并提交代码。类似的命令如下所示: ```bash git clone https://github.com/W1412X/cxsj_sduoj.git cd cxsj_sduoj ``` 提交时需注意遵循教师规定的命名规则以及代码风格指南。 #### 4. **时间复杂度分析** 在 Week5 的教学目标中,还可能强调对算法的时间复杂度进行深入理解。例如,通过数组缀和的方式优化区间查询操作,其核心逻辑类似于以下伪代码实现: ```python n = len(arr) prefix_sum = [0] * (n + 1) for i in range(1, n + 1): prefix_sum[i] = prefix_sum[i - 1] + arr[i - 1] # 查询[L,R]区间的和 result = prefix_sum[R + 1] - prefix_sum[L] ``` 此方法能够显著降低多次查询的操作成本,适合解决类似的任务需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值