在 windows 上部署使用 Whisper 教程

在 Windows 上部署 OpenAI Whisper:详细教程

OpenAI Whisper 是一个功能强大的多语言语音识别模型,能够处理多种音频格式并生成高质量的字幕文件。本文将详细介绍如何在 Windows 系统上部署 Whisper,利用 GPU 加速音频转录,并探讨 Whisper 的基本使用方法和支持的音频格式。

使用体验:直接用cpu(i7-12700)跑small模型,6分钟的音频也大概只要3分钟,除了极个别语速很快的时候的语气词没识别出来,其他地方完全准确。用gpu(3060 laptop)跑small模型,8分钟的音频一分钟以内跑完。因此,对于时长较短的音频,small模型完全够用了

目录

  1. 什么是 Whisper?
  2. 环境准备
  3. 创建虚拟环境并安装 Whisper
  4. 使用 Whisper 进行音频转录
  5. 使用 GPU 加速 Whisper
  6. Whisper 支持的音频格式
  7. 常见问题及解决方案

1. 什么是 Whisper?

Whisper 是 OpenAI 提供的开源语音识别模型,能够将音频文件转录为文本或字幕文件,支持多种语言和多格式输出。其主要功能包括:

  • 自动检测和转录多语言音频。
  • 支持生成 .txt, .srt, .vtt 等格式的字幕文件。
  • 能够处理嘈杂环境下的音频。
  • 通过 GPU 加速,提高转录效率。

2. Whisper 支持的音频格式

Whisper 支持多种常见的音频格式,能够处理各种类型的音频文件,包括但不限于:

  • MP3 (.mp3)
  • WAV (.wav)
  • M4A (.m4a)
  • FLAC (.flac)
  • OGG (.ogg)

3. 环境准备

在开始部署 Whisper 之前,请确保你具备以下环境:

  • 操作系统:Windows 10 或更高版本
  • Python:Python 3.7 及以上版本
  • Conda:用于创建和管理虚拟环境(推荐使用 Miniconda
  • NVIDIA GPU(可选):用于加速音频转录任务

4. 创建虚拟环境并安装 Whisper

  1. 创建虚拟环境
    打开 终端(Anaconda PromptGit Bash等,我个人用的是Git Bash),运行以下命令创建并激活虚拟环境:

    conda create --name whisper_env python=3.9
    conda activate whisper_env
    
  2. 安装 Whisper
    在虚拟环境中运行以下命令安装 Whisper:

    pip install git+https://github.com/openai/whisper.git
    
  3. 安装 FFmpeg
    Whisper 依赖 FFmpeg 处理音频文件,使用以下命令安装:
    (一定要记得安装,不然会报错找不到音频文件)

    conda install -c conda-forge ffmpeg
    
  4. (可选)安装支持 GPU 的 PyTorch
    如果你有 NVIDIA GPU 并且想利用 GPU 加速,安装支持 CUDA 的 PyTorch。例如,针对 CUDA 11.8:

    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
    

5. 使用 Whisper 进行音频转录

Whisper 支持多种音频转录模式,可以生成多种格式的字幕文件。以下是一个简单的音频转录命令:

whisper "path/to/your/audiofile.mp3" --model small --output_format srt --output_dir "path/to/output"
  • –model small:选择模型大小,模型越大,精度越高,但速度较慢(可选模型:tiny, base, small, medium, large)。
  • –output_format srt:指定输出格式为 .srt 字幕文件。
  • –output_dir:指定生成文件的保存路径。

如果需要自动检测语言,你可以直接运行命令。否则,也可以手动指定音频的语言:

whisper "path/to/your/audiofile.mp3" --model small --language English

Whisper 具备自动语言检测功能,可以识别音频中的语言并选择适合的模型进行转录。默认情况下,Whisper 使用前 30 秒的音频进行语言检测。

whisper "path/to/audiofile.mp3" --model small

6. 使用 GPU 加速 Whisper

如果你有 NVIDIA GPU,并且已安装了 CUDA 和支持 GPU 的 PyTorch,Whisper 会自动使用 GPU。你也可以通过 --device 参数明确指定使用 GPU:

whisper "path/to/your/audiofile.mp3" --model small --output_format srt --output_dir "path/to/output" --device cuda

使用 GPU 加速时,音频处理速度会显著提升,特别是在处理较大的模型如 mediumlarge 时。


7. 常见问题及解决方案

1. NumPy 版本兼容性问题

如果你遇到类似 RuntimeError: Numpy is not available 或 NumPy 相关的警告,可以通过降级 NumPy 来解决:
如果用的是Git Bash,则加引号:

pip install "numpy<2.0"

如果用的是 Anaconda Prompt,则不用加引号:

pip install numpy<2.0
2. FileNotFoundError

如果系统提示找不到文件,确保音频文件路径正确。对于 Git Bash 用户,注意文件路径格式应使用正斜杠 /,例如:

whisper "/f/LINSP_podcast/episode.mp3" --model small

如果路径正确还是找不到文件,确保安装了 FFmpeg

3. GPU 不可用

如果你有 NVIDIA GPU,但 PyTorch 无法检测到 GPU,请检查 CUDA 是否安装正确,并使用以下命令验证 GPU 是否可用:

python -c "import torch; print(torch.cuda.is_available())"
4. FFmpeg 问题

如果 FFmpeg 没有安装或无法找到,确保你已经使用 Conda 安装了 FFmpeg:

conda install -c conda-forge ffmpeg

总结

通过这篇教程,你已经了解了如何在 Windows 系统上部署 Whisper,创建虚拟环境、安装必要依赖,并利用 GPU 加速音频转录。Whisper 提供了强大的语音识别能力,支持多种音频格式,并且能够生成不同的字幕文件,适合各种语音转录和字幕生成需求。

希望这篇博客对你有所帮助,如果你有任何问题或建议,欢迎在评论区留言!

<think>嗯,用户想了解如何使用Whisper训练自定义数据集来构建语音识别模型。首先,我需要回忆一下Whisper的基本信息。Whisper是OpenAI开源的自动语音识别模型,支持多语言,基于Transformer架构,对吧?用户提到的引用里提到项目Whisper-Finetune支持不同训练模式,包括无时间戳数据的情况,这可能对数据准备有帮助。 用户需要详细的步骤和教程,所以得按流程来。首先应该是环境配置,然后数据准备,接着模型训练,最后是部署。引用里的资料提到需要安装PyTorch和TensorFlow,可能还需要Hugging Face的库,比如Transformers和Datasets。数据准备的格式可能需要音频文件加对应的文本,可能需要处理成特定结构,比如数据集目录,每个音频文件对应一个文本文件。 数据预处理方面,可能需要使用Whisper自带的特征提取器,将音频转为log-Mel频谱图。然后要处理文本标签,比如分词和编码。这里要确保数据格式符合模型输入要求,可能需要使用WhisperProcessor来处理音频和文本。 训练部分,用户可能需要加载预训练模型,设置训练参数,比如学习率、批次大小,使用Hugging Face的Trainer类来简化训练过程。引用中提到的项目Whisper-Finetune可能提供了训练脚本或示例代码,可以参考他们的实现,特别是如何处理不同训练模式,比如带时间戳或不带时间戳的数据。 微调后的模型保存和评估也很重要,用户可能想知道如何测试模型效果,比如使用WER(词错误率)作为指标。部署方面,引用提到支持Web、Windows和Android部署,可能需要将模型导出为ONNX或其他格式,或者使用相应的框架进行封装。 可能还需要注意一些常见问题,比如数据集规模、计算资源要求,以及如何处理多语言的情况。用户如果数据集较小,可能需要数据增强或者迁移学习的技巧。另外,引用中提到的Google Drive集成可能帮助用户存储数据和模型,特别是在Colab环境下运行训练时。 最后,用户的问题可能还涉及具体的代码示例,比如如何加载模型、准备数据集、训练循环等。需要确保代码示例正确,并符合用户的环境配置,比如使用正确的库版本。同时,提醒用户注意依赖项的安装,避免版本冲突。</think>### 使用 Whisper 训练自定义数据集的详细步骤 #### 1. **环境配置** - **安装依赖库**:需安装 PyTorch、Hugging Face Transformers 和 Datasets 库: ```bash pip install torch transformers datasets datasets[audio] jiwer ``` - **GPU 支持**:确保 CUDA 环境已配置,以加速训练[^4]。 #### 2. **数据准备** - **数据集格式**:音频文件(如 `.wav`)需与对应文本标注文件(`.txt`)配对,目录结构示例: ``` dataset/ ├── audio/ │ ├── sample1.wav │ └── sample2.wav └── labels/ ├── sample1.txt └── sample2.txt ``` - **格式转换**:若音频非 16kHz 采样率,需使用工具(如 `ffmpeg`)转换: ```bash ffmpeg -i input.mp3 -ar 16000 output.wav ``` #### 3. **数据预处理** - **加载 Whisper 处理器**: ```python from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-small") ``` - **特征提取与标注处理**: ```python def prepare_dataset(batch): audio = batch["audio"]["array"] batch["input_features"] = processor(audio, sampling_rate=16000).input_features[0] batch["labels"] = processor.tokenizer(batch["text"]).input_ids return batch ``` #### 4. **模型加载与训练配置** - **加载预训练模型**: ```python from transformers import WhisperForConditionalGeneration model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") model.config.forced_decoder_ids = None # 禁用强制语言标记 ``` - **设置训练参数**: ```python from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="./results", per_device_train_batch_size=8, learning_rate=1e-5, num_train_epochs=3, fp16=True # 启用混合精度训练 ) ``` #### 5. **训练与评估** - **使用 Hugging Face Trainer**: ```python from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=dataset, tokenizer=processor.tokenizer ) trainer.train() ``` - **计算词错误率 (WER)**: ```python from evaluate import load wer_metric = load("wer") predictions = model.generate(input_features) wer = wer_metric.compute(predictions=predictions, references=labels) ``` #### 6. **模型部署(示例:Web API)** ```python from flask import Flask, request import torchaudio app = Flask(__name__) @app.route("/transcribe", methods=["POST"]) def transcribe(): audio_file = request.files["audio"] waveform, sr = torchaudio.load(audio_file) inputs = processor(waveform, return_tensors="pt", sampling_rate=16000) output = model.generate(inputs.input_features) text = processor.batch_decode(output, skip_special_tokens=True)[0] return {"text": text} ``` ### 关键注意事项 - **数据规模**:建议至少 100 小时语音数据以保障效果[^3]。 - **计算资源**:训练 `whisper-large` 需 16GB 以上 GPU 显存。 - **多语言支持**:通过设置 `language` 参数指定目标语言: ```python forced_decoder_ids = processor.get_decoder_prompt_ids(language="zh", task="transcribe") ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值