时间复杂度、空间复杂度

一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

时间复杂度:

时间复杂度的计算并不是程序具体运行的时间,而是算法执行语句的次数。

当我们面前有多个算法时,我们可以通过计算时间复杂度,判断出哪一个算法在具体执行时花费时间最多和最少。

常见的时间复杂度有:
常数阶O(1),
对数阶O(log2 n),
线性阶O(n),
线性对数阶O(n log2 n),
平方阶O(n^2),
立方阶O(n^3)
k次方阶O(n^K),
指数阶O(2^n)。
随着n的不断增大,时间复杂度不断增大,算法花费时间越多。

计算方法
①选取相对增长最高的项
②最高项系数是都化为1
③若是常数的话用O(1)表示
如f(n)=2*n^3+2n+100则O(n)=n^3。

空间复杂度:

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度。

计算方法:
①忽略常数,用O(1)表示
②递归算法的空间复杂度=递归深度N*每次递归所要的辅助空间
③对于单线程来说,递归有运行时堆栈,求的是递归最深的那一次压栈所耗费的空间的个数,因为递归最深的那一次所耗费的空间足以容纳它所有递归过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值