Python中的高级特性(生成式和生成器,闭包与装饰器,内置高阶函数)

1.生成式:

python的生成式在一些类型相互转换的时候可以写出十分优雅的代码,如列表转换成另一个列表、字典、或元组,并且代码的执行效率也比使用for…in…循环高。

列表生成式即生成列表的生成式,可以将多行代码融合成一行。主要的作用是将其他对象转换成列表或对原来的列表进行过滤。

列表生成式的代码效率是高于多行循环结构的,原因是将原本多行代码融合一行,解释加快。

# 需求: 生成100个验证码(4个字母组成的验证码)
import  string
import  random
codes = []
for count in range(100):
    code = "".join(random.sample(string.ascii_letters, 4))
    codes.append(code)
print(codes)

# 列表生成式优化版
codes = ["".join(random.sample(string.ascii_letters, 4)) for i in range(100)]
print(codes)

# 需求: 找出1-100之间可以被3整除的数。
nums = []
for num in range(1, 101):
    if num % 3 == 0:
        nums.append(num)
print(nums)
# 优化版
nums = [num for num in range(1, 101) if num % 3 == 0]
print(nums)

# 集合生成式
result = {i**2 for i in range(0, 10)}
print(result)

# 字典生成式
result = {i:i**2 for i in range(10)}
print(result)



2:生成器:

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。


生成器的实现有两种方法:
# 生成器实现的第一种方法: 将生成式改写成生成器(外层括号改为圆括号)
nums = (i**2 for i in range(10000))

# 生成器实现的第2种方法:yield关键字
#   return: 函数遇到return就返回,return后面的代码并不会执行。
#   yield:遇到yield则停止执行代码, 当再次调用next方法时,会从上次停止的地方继续执行,遇到yield停止。。。。
def login():
    print('step 1')   # 'step 1'
    yield 1           # output 1
    print('step 2')
    yield  2
    print('step 3')
    yield 3
    print('step 4')
    yield 4
# 如果函数里面有yield关键字,函数的返回值就是一个生成器
g = login()
print(next(g))  #step 1  1
print(next(g))  #step 2  2

#如果认为print(next( ))比较慢,也可以通过遍历的方式解决:
# for i in range(4):
#     print(next(g))


3.闭包与装饰器:

3-1:

关于闭包的三个条件:

  1. 函数里面嵌套函数
  2. 外部函数的返回值是内部函数的引用
  3. 内部函数可以使用外部函数的变量

示例:


def timeit(name):
    def wrapper():
        print('wrapper ' + name)
    print('timeit')
    return wrapper

in_fun = timeit(name = 'westos')  # wrapper函数, in_fun实质上就是wrapper函数
in_fun() # timeit
         # wrapper westos

时间戳的概念:


#import  time
# start_time = time.time()  # 时间戳:从1970年1.1到现在经历的秒数
# time.sleep(2)
# end_time = time.time()    # 时间戳:从1970年1.1到现在经历的秒数
# print(end_time-start_time)
# print(time.time())  #1614523628.608633

3-2:

装饰器指的是为被装饰器对象添加额外功能的工具/函数。

  1. 装饰器: 用来装饰函数的工具。
  2. 功能: 在不改变源代码的情况下, 添加额外功能(eg: 计算运行时间, 记录日志,权限判断)的工具.
  3. 如何实现装饰器: 基于闭包

以下示例为:不改变add函数的内容,并为其增加显示函数运行时间的功能


import time
def timeit(f):      # f=add
    def wrapper(x, y):
        start = time.time()
        result = f(x, y)   # f实质上是add函数
        end = time.time()
        print("函数运行的时间为: %.4f" %(end-start))
        return  result
    return wrapper

@timeit   #  语法糖, add=timeit(add)
def add(x, y):
    return x + y

result = add(1, 3)
print(result)

装饰器模板示例:

"""
装饰器的万能模板:
from functools import  wraps
def 装饰器名称(f):
    @wraps(f)  # 保留被装饰函数的属性信息和帮助文档
    def wrapper(*args, **kwargs):
        # 执行函数之前做的事情
        result = f(*args, **kwargs)
        # 执行函数之后做的事情
        return  result
    return  wrapper
"""

装饰器作用演示:


# 需求: 计算函数的运行时间
import  time
from functools import  wraps #默认情况下,有装饰器的函数在查看帮助时会显示装饰器的帮助信息,导入此模块让print()能够看见原函数的帮助信息
def timeit(f):
    """计时器的装饰器"""
    @wraps(f)  # 保留被装饰函数的属性信息和帮助文档
    def wrapper(*args, **kwargs):
        """wrapper内部函数"""
        start = time.time()
        result = f(*args, **kwargs)
        end = time.time()
        print(f"函数{f.__name__}运行时间为{end-start}秒")
        return  result
    return  wrapper

@timeit
def login():
    """login desc"""
    print('login....')

#
@timeit
def crawl():
    import  requests
    url = 'https://upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Python.svg/1200px-Python.svg.png'
    content = requests.get(url).content
    with open('doc/python.png', 'wb') as f:
        f.write(content)
        print("下载图片成功")

# print(help(login))
# login()
crawl()


3-3:含参数的装饰器和多装饰器:

含参数的装饰器:在函数中嵌套两个内层函数,让装饰器可以传参数:
此时需要注意语法糖的过程: 先调用装饰器,遇到一个返回值后 让 login = desc(login)

import  time
from functools import  wraps
def timeit(args='seconds'):
    def desc(f):
        """计时器的装饰器"""
        @wraps(f)  # 保留被装饰函数的属性信息和帮助文档
        def wrapper(*args, **kwargs):
            """wrapper内部函数"""
            start = time.time()
            result = f(*args, **kwargs)
            end = time.time()
            if args == 'seconds':
                print(f"函数{f.__name__}运行时间为{end-start}秒")
            elif args == 'minutes':
                print(f"函数{f.__name__}运行时间为{(end-start)/60}秒")
            return  result
        return  wrapper
    return  desc

@timeit(args='minutes')  # timeit()  @desc===> login=desc(login) 
def login():
    """login desc"""
    print('login....')
# login()

多装饰器:

需要注意:装饰器执行的顺序是由上到下,被装饰的过程是由下到上:即:
输出结果为:
is_login, 用户是否登录
is_permission, 用户是否有权限
显示所有的云主机

from functools import  wraps
def is_login(f):
    # @wraps(f)
    def wrapper1(*args, **kwargs):
        print('is_login, 用户是否登录')
        result = f(*args, **kwargs)
        return  result
    return  wrapper1

def is_permission(f):
    # @wraps(f)
    def wrapper2(*args, **kwargs):
        print('is_permission, 用户是否有权限')
        result = f(*args, **kwargs)
        return  result
    return  wrapper2

# 规则: 执行装饰器内容是从上到下。 被装饰的顺序是从下到上。
@is_login           # show_hosts=is_login(wrapper2)   show_hosts=wrapper1
@is_permission      # show_hosts = is_permission(show_hosts) show_hosts=wrapper2
def show_hosts():
    print("显示所有的云主机")

"""
--: show_hosts()
1). wrapper1()
2). wrapper2()
3). show_hosts()
"""
show_hosts()

4:内置高阶函数:

把函数作为参数传入,这样的函数称为高阶函数,函数式编程就是指这种高度抽象的编程范式

4-1 :
map()是 python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的object并返回
注意:map函数类似于生成器,一边循环一边计算,比较节省资源,因此其结果只保留一次;

4-2:
reduce把一个函数作用在一个序列[x1, x2, x3…]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)


# 1. map函数
result = map(lambda x: x ** 2, [1, 2, 4, 5])
print(list(result)) #[1, 4, 16, 25]
result = map(lambda x, y: x + y, [1, 2, 3], [4, 5, 6])
print(list(result)) # [5, 7, 9]

# 2. reduce函数
from functools import reduce
# (((1+2)+3)+4)+5=reduce result
result = reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
print(result) # 15

# 练习: 求1*2*..10的结果, 用reduce和匿名函数实现
result = reduce(lambda x,y: x*y, range(1, 11))
print(result)
# 3. filter:筛选
# 筛选所有的偶数
result = filter(lambda x: x % 2 == 0, [1, 2, 4, 5, 8])
print(list(result))
# 筛选所有的奇数
result = filter(lambda x: x % 2 != 0, [1, 2, 4, 5, 8])
print(list(result))

# 4. sorted:
result = sorted([1, 29, 2, 3])
print(result)
result = sorted([0, 29, 2, 0], reverse=True)
print(result)
result = sorted([0, 8, 9, 0, 16], key=lambda x:0 if x==0 else 1)
print(result)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值