深度学习&⼤模型训练与推理——硬件配置指南
content
-
Part 1.读懂GPU性能:GPU性能核⼼参数介绍
-
Part 2.现阶段主流显卡(从2080到H100)性能分析
-
Part 3.各类⼤模型推理、微调、预训练所需显存
-
Part 4.从个⼈实验到70B模型推理,各类场景下硬件配置⽅案推荐
公开课附赠独家硬件配置指南表
-
显卡性能排名表
-
显卡性价⽐排名表
-
热⻔显卡参数对⽐表
-
各参数⼤模型训练所需硬件表
-
各参数⼤模型微调&推理硬件表
-
不同需求下硬件配置表
一、读懂显卡参数,GPU核⼼性能参数介绍
常⻅的显卡介绍
-
RTX系列显卡的游戏性能:⼀分钱⼀分货。但是⼤模型⽅⾯的计算性能却并⾮如此。
-
例如4090游戏性能⼏乎是3090的两倍,但若换算为单位⼈⺠币可以买到的⼤模型训练性能,3090是4090的 1.5倍;
NVIDIA DGX H200产品介绍
GPU计算性能核⼼参数
-
CUDA Cores:CUDA核⼼
-
Tensor Cores:张量计算核⼼
-
GPU Memory:显存
-
FLOPS:每秒浮点计算次数
-
NVLink&NVSwitch:显卡桥接
-
TDP:最⼤功耗需求
GPU计算性能核⼼参数详细介绍
-
CUDA Cores:CUDA核⼼,是 NVIDIA GPU 的基础计算单元,负责执⾏并⾏计算任务;
-
Tensor Cores:张