菜鸟笔记之数据结构(16)

声明:以下是学的尚硅谷网课并结合网上资料所记的笔记。可能会有一些错误,发现了会修改。

图的遍历

所谓图的遍历,即对结点的访问,一个图有很多的结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:(1)深度优先遍历(2)广度优先遍历。

深度优先遍历

图的深度优先搜索(Depth First Search,DFS)

  1. 深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点,可以理解为:每次都在访问完当前结点 后首先访问当前结点的第一个邻接结点
  2. 这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
  3. 显然,深度优先搜索是一个递归的过程。

算法步骤

  1. 访问初始结点v,并标记结点v为已访问。
  2. 查找结点v的第一个邻接结点w。
  3. 若w存在,则继续执行4,如果w不存在,则回到第一步,将从v的下一个结点继续。
  4. 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤1,2,3)。
  5. 若w已被访问,查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

核心代码

	//深度优先遍历算法
	private void dfs(boolean[] isVisited, int i) {
		//首先我们访问该结点,输出
		System.out.print(getValueByIndex(i) + " ");
		//将结点设置为已经访问
		isVisited[i] = true;
		//查找结点i的第一个邻接结点
		int w = getFirstNeighbor(i);
		while(w != -1) { //有邻接结点
			if(!isVisited[w]) {
				dfs(isVisited, w);
			}
			//如果w结点已经被访问
			w = getNextNeighbor(i, w);
		}
	}
	
	//对dfs进行一个重载,遍历我们所有的结点,并进行dfs
	public void dfs() {
		isVisited = new boolean[vertexList.size()]; 
		//遍历所有的结点,进行dfs【回溯】
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				dfs(isVisited, i);
			}
		}
	}

广度优先遍历

图的广度优先搜索(Broad First Search,BFS)
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

算法步骤

  1. 访问初始结点v并标记结点v为已访问。
  2. 结点v入队列。
  3. 当队列非空时,继续执行,否则算法结束。
  4. 出队列,取出队头结点u。
  5. 查找结点u的第一个邻接结点w。
  6. 若结点u的邻接结点w不存在,则转到步骤3;否则继续执行以下三个步骤:
    6.1 若结点w尚未被访问,则访问结点w并标记为已访问。
    6.2 结点w入队列。
    6.3 查找结点u的继w邻接结点后的下一个邻接结点,转到步骤6。

核心代码

	//对一个节点进行广度优先遍历的方法
	private void bfs(boolean[] isVisited, int i) {
		int u; //表示队列的头结点对应的下标
		int w; //邻接结点w
		//队列,记录结点访问的顺序
		LinkedList<Integer> queue = new LinkedList<Integer>();
		//访问节点,输出结点信息
		System.out.print(getValueByIndex(i) + " ");
		//标记为已访问
		isVisited[i] = true;
		//将节点加入队列
		queue.addLast(i);
		while(!queue.isEmpty()) {
			//取出队列的头结点下标
			u = (Integer) queue.removeFirst();
			//得到第一个邻接结点的下标
			w = getFirstNeighbor(u);
			while(w != -1) { //找到
				//是否访问过
				if(!isVisited[w]) {
					System.out.print(getValueByIndex(w) + " ");
					//标记已经访问
					isVisited[w] = true;
					//入队列
					queue.addLast(w);
				}
				//如果已经访问过,以u为前驱结点,找w后面的下一个邻接结点
				w = getNextNeighbor(u,w); //体现出广度优先
			}
		}
	}
	
	//对bfs进行一个重载,遍历我们所有的结点,并进行bfs
	public void bfs() {
		isVisited = new boolean[vertexList.size()]; //此处定死的,需要优化
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				bfs(isVisited, i);
			}
		}
	}

应用实例

例子
根据上图,实现该图的深度优先遍历和广度优先遍历算法。

整体代码:

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

public class Graph {
	
	private ArrayList<String> vertexList; //存储顶点集合
	private int[][] edges; //存储图对应的邻接矩阵
	private int numOfEdges; //表示边的数目
	//定义数组boolean[],记录某个结点是否被访问
	private boolean[] isVisited;
	
	public static void main(String[] args) {
		//测试一把图是否创建ok
		int n = 8; //结点的个数
		String vertexs[] = {"1", "2", "3", "4", "5", "6","7", "8"};
		//创建图对象
		Graph graph = new Graph(n);
		//循环添加顶点
		for(String vertex : vertexs) {
			graph.insertVertex(vertex);
		}
		
		//更新边的关系
		graph.insertEdge(0, 1, 1); 
		graph.insertEdge(0, 2, 1); 
		graph.insertEdge(1, 3, 1); 
		graph.insertEdge(1, 4, 1);
		graph.insertEdge(3, 7, 1); 
		graph.insertEdge(4, 7, 1);
		graph.insertEdge(2, 5, 1); 
		graph.insertEdge(2, 6, 1);
		graph.insertEdge(5, 6, 1); 
		
		//显示一把邻接矩阵;
		graph.showGraph();
		
		//测试一把。dfs遍历算法是否ok
		System.out.println("深度优先遍历");
		graph.dfs();
		System.out.println();
		//测试一把。bfs遍历算法是否ok
		System.out.println("广度优先遍历");
		graph.bfs();
	}
	
	//构造器
	public Graph(int n) {
		//初始化矩阵edges和vertexList
		edges = new int[n][n];
		vertexList = new ArrayList<String>();
		numOfEdges = 0;
	}
	
	//得到第一个邻接结点的下标
	/**
	 * @param index 
	 * @return 如果存在就返回对应下标,否则返回-1
	 */
	public int getFirstNeighbor(int index) {
		for(int j = 0; j < vertexList.size(); j++) {
			if(edges[index][j] > 0) {
				return j;
			}
		}
		return -1;
	}
	
	//根据前一个邻接结点的下标来获取下一个邻接结点
	/**
	 * @param v1	表示第v1行
	 * @param v2 	表示第v2列
	 * @return	存在返回下标,不存在返回-1
	 */
	public int getNextNeighbor(int v1, int v2) {
		for(int j = v2 + 1; j < vertexList.size(); j++) {
			if(edges[v1][j] > 0) {
				return j;
			}
		}
		return -1;
	}
	
	//深度优先遍历算法
	private void dfs(boolean[] isVisited, int i) {
		//首先我们访问该结点,输出
		System.out.print(getValueByIndex(i) + " ");
		//将结点设置为已经访问
		isVisited[i] = true;
		//查找结点i的第一个邻接结点
		int w = getFirstNeighbor(i);
		while(w != -1) { //有邻接结点
			if(!isVisited[w]) {
				dfs(isVisited, w);
			}
			//如果w结点已经被访问
			w = getNextNeighbor(i, w);
		}
	}
	
	//对dfs 进行一个重载,遍历我们所有的结点,并进行dfs
	public void dfs() {
		isVisited = new boolean[vertexList.size()]; 
		//遍历所有的结点,进行dfs【回溯】
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				dfs(isVisited, i);
			}
		}
	}
	
	//对一个节点进行广度优先遍历的方法
	private void bfs(boolean[] isVisited, int i) {
		int u; //表示队列的头结点对应的下标
		int w; //邻接结点w
		//队列,记录结点访问的顺序
		LinkedList<Integer> queue = new LinkedList<Integer>();
		//访问节点,输出结点信息
		System.out.print(getValueByIndex(i) + " ");
		//标记为已访问
		isVisited[i] = true;
		//将节点加入队列
		queue.addLast(i);
		while(!queue.isEmpty()) {
			//取出队列的头结点下标
			u = (Integer) queue.removeFirst();
			//得到第一个邻接结点的下标
			w = getFirstNeighbor(u);
			while(w != -1) { //找到
				//是否访问过
				if(!isVisited[w]) {
					System.out.print(getValueByIndex(w) + " ");
					//标记已经访问
					isVisited[w] = true;
					//入队列
					queue.addLast(w);
				}
				//如果已经访问过,以u为前驱结点,找w后面的下一个邻接结点
				w = getNextNeighbor(u,w); //体现出广度优先
			}
		}
	}
	
	//对bfs 进行一个重载,遍历我们所有的结点,并进行bfs
	public void bfs() {
		isVisited = new boolean[vertexList.size()]; //此处定死的,需要优化
		for(int i = 0; i < getNumOfVertex(); i++) {
			if(!isVisited[i]) {
				bfs(isVisited, i);
			}
		}
	}
	
	//图中常用的方法
	//返回结点的个数
	public int getNumOfVertex() {
		return vertexList.size();
	}
	//显示图对应的矩阵
	public void showGraph() {
		for(int[] link : edges) {
			System.out.println(Arrays.toString(link));
		}
	}
	//得到边的数目
	public int getNumOfEdges() {
		return numOfEdges;
	}
	//返回结点i(下标)对应的数据  0->"A", 1->"B", 2->"C"...
	public String getValueByIndex(int i) {
		return vertexList.get(i);
	}
	//返回v1和v2的权值
	public int getWeight(int v1, int v2) {
		return edges[v1][v2];
	}
	
	//插入结点
	public void insertVertex(String vertex) {
		vertexList.add(vertex);
	}
	//添加边
	/**
	 * @param v1 表示第一个顶点对应的下标,"A"   "A"-"B" 
	 * @param v2 表示第二个顶点对应的下标,"B"
	 * @param weight 表示权值
	 */
	public void insertEdge(int v1, int v2, int weight) {
		edges[v1][v2] = weight;
		edges[v2][v1] = weight;
		numOfEdges++;
	}
}

深度优先算法遍历顺序为1 2 4 8 5 3 6 7 。
广度优先算法遍历顺序为1 2 3 4 5 6 7 8 。

总结: 深度优先遍历尽可能优先往深层次进行搜索,广度优先遍历借助了队列来保证按层次搜索,上级层次的结点先入队,结点出队时它的相邻子结点再依次入队。

--------------------------------------- 个人学习笔记----------------------------------------

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值