[学习笔记] 关于 LIS/LDS 的一些奇奇怪怪的东西~

推销我的博客园~

球球大家了来看看我的博客园吧,阅读量 0 0 0 是人干事?

最基础的方法

有用的信息无非是 “权值” 和 “长度”。于是可以固定权值,求最长长度(树状数组);或者固定长度 j j j,求最小权值 g j g_j gj

方案数?

延续上文的方法:可以用树状数组维护最值时同时维护方案数;或者,将 g g g 开成一个 vector \text{vector} vector,放置所有 LIS \text{LIS} LIS j j j 的数字及其方案数,显然这些数字是递减的。设位置 i i i 的方案数为 f i f_i fi,它的 LIS \text{LIS} LIS p p p,显然有如下转移:

KaTeX parse error: Undefined control sequence: \and at position 23: …um_{j\in g(p-1)\̲a̲n̲d̲ ̲a_j<a_i} f_j

因为存储了历史值,所以显然不是所有属于 g ( p − 1 ) g(p-1) g(p1) 的数字都能转移到 i i i。所以需要做一个前缀和 + + + 二分。

Dilworth \text{Dilworth} Dilworth 定理

不下降子序列最小个数 = = = LIS \text{LIS} LIS 的长度。

树上 LIS \text{LIS} LIS

例 1. BZOJ  \text{BZOJ } BZOJ 大根堆

还是和 基础方法 一样:对于固定权值,此时发现儿子之间是互不影响的,于是可以使用线段树合并;对于固定长度,定长的数组无法处理,所以可以开一个 multiset \text{multiset} multiset

例 2. CF490F Treeland Tour \text{CF490F Treeland Tour} CF490F Treeland Tour

对于固定权值,用线段树分别维护 LIS \text{LIS} LIS LDS \text{LDS} LDS。具体合并两棵线段树时,可以以 mid \text{mid} mid 为界进行 LIS \text{LIS} LIS LDS \text{LDS} LDS 的合并。

极长 LIS \text{LIS} LIS

例 1. BZOJ - 2957  \text{BZOJ - 2957 } BZOJ - 2957 楼房重建

将斜率作为权值,题目要求的就是 能选则选 的极长 LIS \text{LIS} LIS

考虑用线段树维护,节点 [ l , r ] [l,r] [l,r] 维护区间最大斜率 k k k l l l 开始 的极长 LIS \text{LIS} LIS,令其为 L L L。定义 calc ( o , k ) \textbf{calc}(o,k) calc(o,k) 为区间 o o o 中,且起点大于 k k k 的极长 LIS \text{LIS} LIS

那么更新节点 o o o 的答案时,就只用左儿子的答案加上 calc ( rson , k lson ) \textbf{calc}(\text{rson},k_{\text{lson}}) calc(rson,klson) 即可。

关于 calc ( ) \textbf{calc}() calc() 的内部实现,当左儿子的最大斜率不大于 k k k 时直接递归右儿子;反之递归左儿子,加上右半部分已经算好的值(因为左半部分的斜率不会变化)。注意右半部分算好的值不是 L rson L_{\text{rson}} Lrson,这个没有考虑左半部分的斜率。

时间复杂度 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n)

#include <cstdio>
#define print(x,y) write(x),putchar(y)

template <class T>
inline T read(const T sample) {
	T x=0; char s; bool f=0;
	while((s=getchar())>'9' or s<'0')
		f |= (s=='-');
	while(s>='0' and s<='9')
		x = (x<<1)+(x<<3)+(s^48),
		s = getchar();
	return f?-x:x;
}

template <class T>
inline void write(T x) {
    static int writ[40],w_tp=0;
    if(x<0) putchar('-'),x=-x;
    do writ[++w_tp]=(x-x/10*10),x/=10; while(x);
    while(putchar(writ[w_tp--]^48),w_tp);
}

#include <iostream>
using namespace std;

const int maxn = 1e5+5;

int n,m;
struct node {
    double k; int ans;
} t[maxn<<2];

int calc(int o,int l,int r,const double k) {
    if(l==r) return t[o].k>k;
    int mid=l+r>>1;
    if(t[o<<1].k<=k) 
        return calc(o<<1|1,mid+1,r,k);
    return calc(o<<1,l,mid,k)+t[o].ans-t[o<<1].ans;
}

void ins(int o,int l,int r,int p,const double k) {
    if(l==r) return t[o].k=k,t[o].ans=1,void();
    int mid=l+r>>1;
    if(p<=mid) ins(o<<1,l,mid,p,k);
    else ins(o<<1|1,mid+1,r,p,k);
    t[o].k = max(t[o<<1].k,t[o<<1|1].k);
    t[o].ans = t[o<<1].ans+calc(o<<1|1,mid+1,r,t[o<<1].k);
}

int main() {
    n=read(9),m=read(9);
    for(int i=1;i<=m;++i) {
        int x=read(9),y=read(9);
        ins(1,1,n,x,1.0*y/x);
        print(t[1].ans,'\n');
    }
    return 0;
}

例 2. Nowcoder - 7615D \text{Nowcoder - 7615D} Nowcoder - 7615D 牛半仙的妹子序列

**题目大意:**给定一个长度为 n n n 的排列,求出包含极长上升子序列的个数。 n ≤ 2 ⋅ 1 0 5 n\le 2\cdot 10^5 n2105

首先想到 d p \mathtt{dp} dp,发现 j j j 能向 i i i 转移的条件是:只考虑 < a i <a_i <ai 的数, a j a_j aj 是区间 [ j , i ) [j,i) [j,i) 中最大的数,且 a j < a i a_j<a_i aj<ai

其实这可以转化为 cdq \text{cdq} cdq 分治,我们可以按照 a a a 来分治,转移时用前半部分贡献后半部分即可。

问题是后面的条件如何满足?事实上它可以转化为双向的条件:在 [ l , mid ] [l,\text{mid}] [l,mid] 之中求出第一个满足在 原序列 上下标大于 j j j 且值大于 a j a_j aj 的数字在原序列上的下标 r j r_j rj;在 ( mid , r ] (\text{mid},r] (mid,r] 之中求出第一个满足在 原序列 上下标小于 i i i 且值小于 a i a_i ai 的数字在原序列上的下标 l i l_i li

由于 r j , l i r_j,l_i rj,li 均满足权值在 ( a j , a i ) (a_j,a_i) (aj,ai) 之间,那么显然上面的条件可以这样被描述:

l i < j < i < r j l_i<j<i<r_j li<j<i<rj

这个问题就很简单了 —— 将 i i i 按照 l i l_i li 从大到小排序,依次在树状数组中添加 j j j d p \mathtt{dp} dp 值,拿 r i r_i ri 来查询即可。

时间复杂度 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n)


其实这道题目也可以转化为上一道例题:我们发现,对于每个 i i i,合法的 j j j 其实就是从 i i i 开始能选则选的单增序列(当然从左往右就是单减的)!转移时从小到大枚举权值,这样就能丢掉 最大值小于 a i a_i ai 的限制。维护时直接套板子, calc ( o , k ) \textbf{calc}(o,k) calc(o,k) 的含义就是大于 k k k 的方案数,所以需要维护最大值。时间复杂度仍然是 O ( n log ⁡ 2 n ) \mathcal O(n\log^2 n) O(nlog2n) 的。

看看代码吧:

#include <cstdio>
#define print(x,y) write(x),putchar(y)

template <class T>
inline T read(const T sample) {
	T x=0; char s; bool f=0;
	while((s=getchar())>'9' or s<'0')
		f |= (s=='-');
	while(s>='0' and s<='9')
		x = (x<<1)+(x<<3)+(s^48),
		s = getchar();
	return f?-x:x;
}

template <class T>
inline void write(T x) {
    static int writ[40],w_tp=0;
    if(x<0) putchar('-'),x=-x;
    do writ[++w_tp]=(x-x/10*10),x/=10; while(x);
    while(putchar(writ[w_tp--]^48),w_tp);
}

#include <iostream>
using namespace std;

const int maxn = 2e5+5;
const int mod = 998244353;

int n,pos[maxn],lim;
int a[maxn],dp[maxn];
struct node {
    int mx,lans;
} t[maxn<<2];

inline int inc(int x,int y) {
    return x+y>=mod?x+y-mod:x+y;
}

int calc(int o,int l,int r,int k) {
    if(l==r) return t[o].mx>k?dp[t[o].mx]:0;
    int mid=l+r>>1;
    if(t[o<<1|1].mx<=k) return calc(o<<1,l,mid,k);
    return inc(calc(o<<1|1,mid+1,r,k),t[o].lans);
}

int ask(int o,int l,int r,int L,int R) {
    if(l>=L && r<=R) {
        int v=lim; lim = max(lim,t[o].mx);
        return calc(o,l,r,v);
    }
    int mid=l+r>>1,ret=0;
    if(R>mid) ret=ask(o<<1|1,mid+1,r,L,R);
    if(L<=mid) ret=inc(ret,ask(o<<1,l,mid,L,R));
    return ret;
}

void ins(int o,int l,int r,int p,int k) {
    if(l==r) return t[o].mx=k,void();
    int mid=l+r>>1;
    if(p<=mid) ins(o<<1,l,mid,p,k);
    else ins(o<<1|1,mid+1,r,p,k);
    t[o].mx = max(t[o<<1].mx,t[o<<1|1].mx);
    t[o].lans = calc(o<<1,l,mid,t[o<<1|1].mx);
}

int main() {
    n=read(9);
    for(int i=1;i<=n;++i) 
		pos[a[i]=read(9)]=i;
    for(int i=1;i<=n;++i) {
        int wh = pos[i]; lim=0;
        dp[i] = ask(1,1,n,1,wh);
        if(!dp[i]) dp[i]=1;
        ins(1,1,n,wh,i);
    }
    int ans=0; lim=0;
    for(int i=n;i;--i)
    	if(lim<a[i]) {
    		ans = inc(ans,dp[a[i]]);
    		lim = a[i];
		}
	print(ans,'\n');
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一篇关于区间DP的学习笔记,希望对你有所帮助。 ### 什么是区间DP 区间 DP 是一种动态规划算法,用于解决一些区间上的问题。具体来说,区间 DP 通常用于解决如下问题: - 最长公共子序列(LCS) - 最长递增子序列(LIS) - 最大子段和 - 区间选数问题 区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。 ### 区间 DP 的递推方法 区间 DP 的递推方法通常有两种,一种是自底向上的递推方法,一种是自顶向下的记忆化搜索方法。 自底向上的递推方法通常采用二维数组或三维数组来记录状态转移方程,具体的递推方式如下: ```cpp for (int len = 2; len <= n; len++) { for (int i = 1; i <= n - len + 1; i++) { int j = i + len - 1; for (int k = i; k < j; k++) { // 状态转移方程 } } } ``` 其中,len 表示区间长度,i 和 j 分别表示区间的左右端点,k 表示区间的划分点。 自顶向下的记忆化搜索方法通常采用记忆化数组来记录状态转移方程,具体的递推方式如下: ```cpp int dp(int i, int j) { if (i == j) return 0; if (memo[i][j] != -1) return memo[i][j]; memo[i][j] = INF; for (int k = i; k < j; k++) { memo[i][j] = min(memo[i][j], dp(i, k) + dp(k + 1, j) + ...); } return memo[i][j]; } ``` 其中,i 和 j 分别表示区间的左右端点,k 表示区间的划分点,memo 数组用于记忆化状态转移方程。 ### 区间 DP 的优化 对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。 一种常见的优化方式是状态压缩,将二维或三维数组压缩成一维数组,从而减少空间的消耗。 另一种常见的优化方式是使用滚动数组,将数组的维度从二维或三维减少到一维,从而减少时间和空间的消耗。 此外,对于一些具有特殊性质的区间 DP 问题,我们还可以使用单调队列或单调栈等数据结构来进行优化,从而减少时间和空间的消耗。 ### 总结 区间 DP 是一种常用的动态规划算法,用于解决一些区间上的问题。区间 DP 通常采用分治或递推的方式进行求解,具体方法取决于问题的性质。对于一些区间 DP 问题,我们可以通过一些技巧和优化来减少时间和空间的消耗。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值