【自然语言处理】知识图谱

语境

分类详情
物理语境时间、地点/场所 ; 天气 ; 情绪及情感; 设备显示; 设备感知
言语语境上下文;主题及焦点;设备反馈
知识语境人类常识; 领域知识;Agent画像;设备信息库; 用户画像
语境的生命周期请求级别;会话级别;长期
知识图谱
  • Thing, not Strings
  • 是一种知识的组织形式
  • 是一种概念模型
    • 关系数据库 :ER
    • 面向对象 :类图
  • 是一种图模型
    • 节点: 实体,值
    • 边: 关系,属性
知识图谱的构建
本体层:

在这里插入图片描述

实体抽取(NER)
  • CRF+Bi-LSTM
  • NER
关系抽取:
  • 有监督的学习方法:看成分类问题、需要大量标注(准确度高)
  • 半监督学习方法:取一小部分标注,然后迭代
  • 无监督学习方法:聚类

知识抽取框架:

Deepdive
  • 使用弱监督学习,从非结构化的文本中抽取结构化的关系数据,可以判断俩个实体间是否存在指定关系。具有较强的灵活性,可以自己训练模型。
  • 主要要求开发者思考特征而不是算法。
  • 可以通过使用已有的领域知识指导推理,接受用户反馈,提高预测的质量
  • 使用distant supervision 技术,只需要少量甚至不需要训练数据
基于深度学习端到端的联合标注
  • 将抽取问题转换成标注任务,训练一个端到端标注模型来抽取关系
  • 根据标签序列,将同样关系类型的实体合并成一个三元组作为最后的结果。
输入句子
标注框架
端到端的标注模型
抽取结果

例子:
在这里插入图片描述

实体对齐
  • 实体对齐,将实体归并成代表真实世界同一对象的具有全局唯一标识的实体对象。
  • 实体对齐,主要计算相似度;具有相同描述的实体可能是同一实体;具有相同属性-值的实体可能是相同对象;具有相同邻居的实体可能是同一实体。
  • 要充分考虑数据源的可靠性以及不同信息在各个数据源中出现频度来决定最终选用哪个类别和哪个属性值。
  • 利用来自如LOD(linked open data中已有的人工对齐标注数据),发现更多相似的实体对
步骤详情
模式设计概念层的定义;属性定义;约束及规则的定义;模式精简
数据来源领域百科表格;通用百科导出;业务系统导出;外部系统的输入
词汇挖掘同义词挖掘; 缩率词挖掘; 短语挖掘;情感词挖掘
实体发现实体实现; 实体归类; 实体链接
关系发现关系分类
知识融合实体对齐 ;属性融合 ; 值规范化
质量控制知识补全; 知识纠错; 知识更新;

领域KG(领域的知识图谱)可以是用户编辑、应用的反馈去修正知识本体

知识推理
  • 基于符号的推理
  • 基于OWL本体的推理
  • 基于图的方法(PRA算法)
    • 基本思想:将量级两个实体的路径作为特征来预测其之间的可能存在的关系
  • 基于分布式知识语义表达的方法(Trans系列模型)
    • 将实体和关系映射到一个低纬度embedding空间中
    • TransR模型:多对多 ,实体空间关系空间
  • 基于深度学习的推理
    可参考:清华大学开源OpenKE:知识表示学习平台
典型的知识图谱的评估方案
评估方案方法说明评估层次
基于黄金标准评估将所构建的本体与黄金标准(一个工人比较成熟的本体或者人工标注术语集)比对,罗列不足进行改进词汇数据层,层级分类层、语义关系层
基于本体任务、应用的本体评估一个特定应用环境下,测试一组本地,看哪个本体最适合该应用,这些应用包括语义网、信息抽取、信息检索等词汇数据层,层级分类层、语义关系层、应用层
数据驱动评估通过衡量本体与领域预料的匹配度或者本地的领域覆盖度来衡量本体,或者使用其他参考数据来辅助本体评估过程,这种方法常与文本分析、机器学习技术结合词汇数据层、层级分类层、语义关系层
基于指标的评估(人工评估)基于一套预先定义好的准则原则、标准等进行评估的方法。其多是从构建本体的原则来评估本体词汇数据层,层级分类层、语义关系层、应用层
实体发现与链接发现

预处理

  • 建立mention->entity的关系表
  • 抽取entity相关特征
    • 实体的先验法律(知名度)
    • 实体上下文次分布与篇章的主题词分布
    • 实体之间的语义关联度

发现文本中的mention,并找到候选词实体
对候选词实体排序,返回最有可能的实体

  • 实体本身的信息
  • 实体与实体之间协同关系

–参考内容:
https://edu.csdn.net/course/play/9250/215582
知识图谱关键技术与应用案例

<think>好的,我现在要帮用户查找自然语言处理知识图谱领域的顶级期刊。首先,我需要确认用户的需求是什么。他们可能是在做学术研究,需要投稿或者了解最新的研究动态,所以需要知道哪些期刊在这些领域内具有高影响力。 接下来,我应该回忆一下自然语言处理(NLP)和知识图谱(KG)领域的知名期刊。自然语言处理方面,顶级会议如ACL、EMNLP、NAACL的会议论文非常重要,但用户问的是期刊,所以需要考虑期刊。常见的顶级期刊包括Computational Linguistics、Journal of Artificial Intelligence Research(JAIR)、Artificial Intelligence(AIJ)、IEEE Transactions on Pattern Analysis and Machine Intelligence(TPAMI)等。此外,像ACM Transactions on Information Systems(TOIS)和ACM Transactions on Speech and Language Processing(TSLP)也可能相关。 知识图谱方面,这个领域通常与语义网、数据库、人工智能交叉,所以相关期刊可能有Semantic Web Journal、Journal of Web Semantics(JWS)、Data & Knowledge Engineering(DKE)、IEEE Transactions on Knowledge and Data Engineering(TKDE)等。另外,像Information Systems和Journal of Artificial Intelligence Research(JAIR)也可能涉及知识图谱的研究。 然后,我需要考虑是否有综合性的期刊同时涵盖这两个领域。例如,Artificial Intelligence Journal(AIJ)和JAIR可能同时接受NLP和KG的论文。此外,一些跨学科的期刊如Applied Intelligence、Knowledge-Based Systems(KBS)也可能相关。 还要注意用户提到的引用文献,比如引用[1]提到知识图谱与大型语言模型的结合,这可能暗示用户对应用型或跨学科研究感兴趣,因此像IEEE Access或Sensors这样的跨学科期刊也可能值得提及,尽管它们的影响因子可能不如专业期刊高。 此外,需要确认这些期刊的声誉和影响因子。例如,Computational Linguistics是ACL的期刊,具有很高的权威性。TPAMI是IEEE的顶级期刊,影响因子很高,覆盖范围包括NLP相关的模式识别和机器学习。Semantic Web Journal专注于语义网技术,与知识图谱密切相关。 还需要注意用户可能需要更具体的分类,比如将NLP和KG分开列出顶级期刊,或者综合在一起的。根据问题,用户是希望同时涉及这两个领域的顶级期刊,所以可能需要分别列出,再指出交叉领域的期刊。 最后,生成相关问题时要考虑用户可能的后续需求,比如如何评估期刊质量、会议与期刊的区别,或者最新的研究趋势,比如大模型与知识图谱的结合,这可能与引用文献中的内容相关。</think>### 自然语言处理知识图谱领域顶级期刊推荐 #### 自然语言处理(NLP)领域顶级期刊 1. **Computational Linguistics** - 国际计算语言学协会(ACL)旗下期刊,专注于语言计算理论和应用,是NLP领域的权威期刊[^1]。 2. **Journal of Artificial Intelligence Research (JAIR)** - 覆盖NLP、机器学习等方向,接受高质量的理论与实证研究。 3. **IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)** - 侧重模式识别与机器学习,包含NLP相关的跨学科研究。 4. **Artificial Intelligence (AIJ)** - 综合类人工智能期刊,涵盖NLP的算法、模型和应用。 #### 知识图谱(KG)领域顶级期刊 1. **Semantic Web Journal (SWJ)** - 专注于语义网、知识表示与推理,是知识图谱领域的核心期刊。 2. **Journal of Web Semantics (JWS)** - 聚焦语义技术、知识图谱构建与关联数据。 3. **Data & Knowledge Engineering (DKE)** - 覆盖知识工程、数据库与知识图谱的实践研究。 4. **IEEE Transactions on Knowledge and Data Engineering (TKDE)** - 强调知识发现与数据挖掘,包含知识图谱优化方法[^2]。 #### 交叉领域期刊 1. **ACM Transactions on Information Systems (TOIS)** - 涉及信息检索、知识图谱与NLP结合的跨学科研究。 2. **Knowledge-Based Systems (KBS)** - 关注知识驱动的系统设计,包括NLP与知识图谱融合应用[^3]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值