Sequential Model-Based Optimization(SMBO)

本文深入探讨了高斯过程(GP)及其在全局超参数优化中的应用,尤其是Sequential Model-Based Optimization(SMBO)策略。介绍了单高斯模型(SGM)和高斯混合模型(GMM)的概念,以及如何使用EM算法估计GMM参数。此外,文章还阐述了SMBO中的树状结构Parzen估计器(TPE)和GP的区别,以及它们在处理高维优化问题时的效率提升。文章最后讨论了SMBO的优化标准,如Expected Improvement,并提到了相关软件如Hyperopt和贝叶斯优化工具。
摘要由CSDN通过智能技术生成

The Gaussian Process Approach(GP)

所谓概率模型,是指训练模型的形式是P(Y|X)。输入是X,输出是Y,训练后模型得到的输出不是一个具体的值,而是一系列的概率值(对应于分类问题来说,就是输入X对应于各个不同Y(类)的概率),然后我们选取概率最大的那个类作为判决对象(软分类–soft assignment)。所谓非概率模型,是指训练模型是一个决策函数Y=f(X),输入数据X是多少就可以投影得到唯一的Y,即判决结果(硬分类–hard assignment)
高斯混合模型概述

1.1. 单高斯模型(Single GaussianModel, SGM)

N(x;μ,C)=1(2π)n|C|exp[12(xμ)TC1(xμ)] (1)
对于单高斯模型,由于可以明确训练样本是否属于该高斯模型(如训练人脸肤色模型时,将人脸图像肤色部分分割出来,形成训练集),故μ通常由训练样本均值代替,由样本方差代替。为了将高斯分布用于模式分类,假设训练样本属于类别K,那么,式(1)可以改为如下形式:
N(x/K)=1(2π)n|C|exp[12(xμ)TC1(xμ)] (2)

式(2)表明样本属于类别K的概率大小。从而将任意测试样本输入式(2),均可以得到一个标量,然后根据阈值t来确定该样本是否属于该类别,阈值t可以为经验值,也可以通过实验确定。

1.2高斯混合模型(Gaussian Mixture Model,GMM)

高斯混合模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,它是一个将事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。s是单一高斯概率密度函数的延伸。
假设有一批观测数据

X={ x1,x2,...,xn}
,数据个数为n个。取 H 中的某一部分样本点生成单一的高斯模型,K个单一的高斯模型投票选择最大概率的分类就形成了混合高斯模型。

假设每个高斯模型在混合模型所占的比例 αj ,则有这些观测数据分布密度函数如下:
p(xi)=Mj=1αjNj(xj;μj,Cj),Mj=1αj=1
其中 Nj(x;μj,Cj)=1(2π)n|Cj|exp[12(xμj)TC1j(Xμj)]
表示第j个的单一高斯模型。其中 μ 表示x数学期望或均值,C表示协方差矩阵。
φj=(αj,μj,Cj) ,GMM一共有M个SGM,通过样本集X来估计来估计GMM的所有参数: 令 Φ=(φ1,φ2,...,φM)T ,样本X的概率公式为:
p(X|Φ)=Ni=1Mj=1αjNj(Xi;μj,Cj)
通过EM(Expectation Maximum)算法对GMM参数进行估计。
算法流程:
(1)初始化
方案1:协方差矩阵 Cj0 设为单位矩阵,每个模型比例的先验概率 αj0=1/M ,均值 μj0 设为随机数。
(2)估计步骤(E-step)

  • 7
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
回答: Sequential Self-Attention是一种用于顺序推荐系统的模型。传统的顺序推荐系统模型如马尔可夫链、循环神经网络和自我注意,都将交互历史视为一个有顺序的序列,但没有考虑交互物品之间的时间间隔。而Sequential Self-Attention则在序列模型框架中考虑了交互物品之间的时间间隔,以探索不同时间间隔对预测下一个物品的影响。这个模型被称为TiSASRec,它不仅考虑了物品的绝对位置,还考虑了序列中物品之间的时间间隔。研究表明,TiSASRec在不同的设置下,以及在稀疏和密集数据集上,都表现出很好的性能,并且优于其他先进的序列模型。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [论文笔记 Time Interval Aware Self-Attention for Sequential Recommendation](https://blog.csdn.net/weixin_39129550/article/details/105375259)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* [Time Interval Aware Self-Attention for Sequential Recommendation](https://blog.csdn.net/buduxiyi2/article/details/116146096)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值