引言
在现代医疗技术中,AI技术与传统中医的结合为健康监测带来了新的可能性。本案例将介绍如何通过STM32微控制器实现机器号脉(AI把脉)外设控制。
项目背景
机器号脉是一种结合AI技术的健康监测方法,通过传感器采集脉搏信号,利用STM32进行数据处理和分析,最终实现对脉搏特征的识别和健康评估。
硬件设计
- STM32微控制器:作为核心控制单元,负责信号采集、数据处理和外设控制。
- 信号采集模块:使用高精度传感器采集脉搏信号。
- 传感器:如压力传感器或光电传感器,用于检测脉搏波动。
软件设计
- 信号采集:通过ADC模块采集传感器信号。
- 数据处理:使用数字信号处理算法提取脉搏特征。
- AI算法:利用简单的机器学习模型进行健康评估。
- PWM输出:控制外设(如LED或蜂鸣器)反馈结果。
代码实现
以下为实现该功能的C++代码示例:
#include "stm32f10x.h"
// 定义ADC通道
#define ADC_CHANNEL 0
// 定义PWM输出频率
#define PWM_FREQUENCY 1000
// 定义PWM占空比
#define PWM_DUTY_CYCLE 50
// 初始化ADC
void ADC_Init() {
// 配置ADC时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
// 配置ADC通道
ADC_InitTypeDef ADC_InitStructure;
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
// 配置ADC通道
ADC_ChannelConfTypeDef ADC_ChannelConfStructure;
ADC_ChannelConfStructure.ADC_Channel = ADC_Channel;
ADC_ChannelConfStructure.ADC_SampleTime = ADC_SampleTime_5Cycles5;
ADC_ChannelConfig(ADC1, &ADC_ChannelConfStructure);
}
// 初始化PWM
void PWM_Init() {
// 配置PWM时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
// 配置PWM模式
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = PWM_FREQUENCY;
TIM_TimeBaseStructure.TIM_Prescaler = 7200;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// 配置PWM占空比
TIM_OCInitTypeDef TIM_OCStructure;
TIM_OCStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCStructure.TIM_OutputNState = TIM_OutputNState_Disable;
TIM_OCStructure.TIM_Pulse = (PWM_FREQUENCY * PWM_DUTY_CYCLE) / 100;
TIM_OC1_Init(TIM2, &TIM_OCStructure);
// 启动PWM
TIM_Cmd(TIM2, ENABLE);
}
// 采集脉搏信号
uint16_t Read_Pulse() {
// 启动ADC转换
ADC_SoftwareStartConv(ADC1);
// 等待转换完成
while(ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
// 读取转换结果
return ADC_GetConversionValue(ADC1);
}
// 主函数
int main() {
// 初始化系统时钟
System_Init();
// 初始化ADC
ADC_Init();
// 初始化PWM
PWM_Init();
while(1) {
// 采集脉搏信号
uint16_t pulse = Read_Pulse();
// 处理脉搏信号(简单示例)
if(pulse > 2000) {
// 脉搏过强,调整PWM占空比
TIM_SetCompare1(TIM2, (PWM_FREQUENCY * 75) / 100);
} else if(pulse < 1000) {
// 脉搏过弱,调整PWM占空比
TIM_SetCompare1(TIM2, (PWM_FREQUENCY * 25) / 100);
} else {
// 脉搏正常,保持PWM占空比
TIM_SetCompare1(TIM2, (PWM_FREQUENCY * 50) / 100);
}
}
}
测试与调试
- 信号采集测试:确保传感器能够正确采集脉搏信号。
- 数据处理测试:验证脉搏信号处理算法的准确性。
- PWM输出测试:检查PWM输出是否符合预期。
总结与展望
通过本案例,开发者可以快速实现机器号脉(AI把脉)外设控制功能。未来,可以通过优化AI算法、增加更多功能模块(如心率监测、体温监测等)来进一步提升系统的功能和性能。