2025 年 4 月 18 日,北京亦庄半程马拉松赛道上,人形机器人的表现引发了全民热议。这场被称为 “机器人大考” 的马拉松,原本旨在展示人形机器人和具身智能的发展成果,却因机器人途中跌倒、跑错方向等状况频出,让网友戏谑 “这是来搞笑的吗”?但如果我们深入探究这些 “狼狈” 现象背后的技术逻辑,会发现这恰是具身智能在成长过程中不可避免的 “阵痛”。
一、人形机器人 “失误” 的技术剖析
(一)跌倒:平衡控制的难题
人形机器人在复杂马拉松赛道上跌倒,暴露出其平衡控制系统的短板。当前人形机器人的平衡控制主要依赖于内部的惯性测量单元(IMU)和关节传感器,这些传感器实时监测机器人的姿态和运动状态,并将数据反馈给控制系统。控制系统根据预设的算法模型,快速调整关节扭矩和步伐,以维持平衡。
然而,马拉松赛道的复杂性超出了机器人的应对能力。坑洼路面、突发的风力等因素,都会使机器人实际受到的外力与算法模型中的假设条件产生偏差。例如,当机器人踏上一块松动的石子,IMU 感知到的姿态倾斜可能已经滞后于实际发生的重心偏移,此时控制系统的调整动作无法及时纠正平衡,导致跌倒。
这反映出人形机器人在平衡控制方面,其传感器精度、数据反馈速度以及控制算法的适应性都有待提升。研发人员需要进一步优化传感器融合技术,使 IMU 与其他传感器(如足底压力传感器)的数据能够更精准地协同,为控制系统提供更全面、实时的环境感知。同时,基于深度强化学习的平衡控制算法有望成为突破方向,让机器人在大量模拟跌倒场景中自主学习最优的平衡恢复策略。