摘要:本文将带你从零开始搭建基于本地LLM与MCP协议的AI智能体,通过通俗易懂的步骤和实战案例,揭秘智能体的核心架构、开发流程及优化技巧。无需复杂背景,只需跟随指南操作,即可打造高效、安全的本地智能助手,助你快速掌握AI开发实战能力!
一、为什么选择本地LLM+MCP架构?
在AI开发浪潮中,本地部署LLM(如Ollama、DeepSeek)与MCP协议组合的优势愈发凸显:
- 数据安全与隐私保护:本地运行避免数据上传云端,尤其适合处理敏感信息。
- 低成本高性能:利用本地硬件资源,降低服务器成本,实现实时响应。
- 灵活扩展性:MCP协议提供标准化工具调用接口,可快速集成数据库、API、文件系统等资源。
- 规避侵权风险:通过模仿开发思路而非直接复制,确保原创性,避免法律纠纷。
核心概念速览:
- LLM:本地化大语言模型,负责推理与决策(如DeepSeek R1)。
- MCP(Model Context Protocol):标准化协议,连接模型与外部工具,实现“即插即用”能力。
二、环境搭建与准备(手把手教学)
- 安装依赖工具
(1)安装Ollama(本地模型运行框架):
Windows用户
winget install ollama
MacOS用户
brew install ollama
Linux用户
curl -fsSL https://ollama.com/install.sh | sh
(2)配置MCP依赖:
pip install fastmcp mcp python-dotenv
创建虚拟环境(推荐)
uv venv myenv && source myenv/bin/activate
- 启动本地LLM模型
以DeepSeek R1为例:
ollama run deepseek-r1
提示:若模型文件较大,可提前下载至本地加速启动。
3. 搭建MCP服务器
(1)编写简易MCP服务器示例(Python代码):
math_server.py
from fastmcp import FastMCP
mcp = FastMCP("MathTools")
@mcp.tool()