基于本地LLM(大语言模型)与MCP(模型上下文协议)架构构建AI智能体全指南

摘要:本文将带你从零开始搭建基于本地LLM与MCP协议的AI智能体,通过通俗易懂的步骤和实战案例,揭秘智能体的核心架构、开发流程及优化技巧。无需复杂背景,只需跟随指南操作,即可打造高效、安全的本地智能助手,助你快速掌握AI开发实战能力!


一、为什么选择本地LLM+MCP架构?
在AI开发浪潮中,本地部署LLM(如Ollama、DeepSeek)与MCP协议组合的优势愈发凸显:

  1. 数据安全与隐私保护:本地运行避免数据上传云端,尤其适合处理敏感信息。
  2. 低成本高性能:利用本地硬件资源,降低服务器成本,实现实时响应。
  3. 灵活扩展性:MCP协议提供标准化工具调用接口,可快速集成数据库、API、文件系统等资源。
  4. 规避侵权风险:通过模仿开发思路而非直接复制,确保原创性,避免法律纠纷。
    核心概念速览:
  • LLM:本地化大语言模型,负责推理与决策(如DeepSeek R1)。
  • MCP(Model Context Protocol):标准化协议,连接模型与外部工具,实现“即插即用”能力。

二、环境搭建与准备(手把手教学)

  1. 安装依赖工具
    (1)安装Ollama(本地模型运行框架):
Windows用户  
winget install ollama  
MacOS用户  
brew install ollama  
Linux用户  
curl -fsSL https://ollama.com/install.sh | sh  

(2)配置MCP依赖:

pip install fastmcp mcp python-dotenv  
创建虚拟环境(推荐)  
uv venv myenv && source myenv/bin/activate  
  1. 启动本地LLM模型
    以DeepSeek R1为例:
ollama run deepseek-r1  

提示:若模型文件较大,可提前下载至本地加速启动。
3. 搭建MCP服务器
(1)编写简易MCP服务器示例(Python代码):

math_server.py  
from fastmcp import FastMCP  
mcp = FastMCP("MathTools")  
@mcp.tool()  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码力金矿(编程高手8)

谢谢您的打赏,我将会更好创作。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值