数学建模笔记——TOPSIS[优劣解距离]法

TOPSIS(优劣解距离)法

1. 基本概念

C. L.Hwang和 K.Yoon于1981年首次提出 TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution),可翻译为逼近理想解排序法,国内常简称为优劣解距离法。

TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。

TOPSIS法引入了两个基本概念:

  • 理想解:设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;
  • 负理想解:设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。方案排序的规则是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。TOPSIS通过最接近理想解且最远离负理想解来确定最优选择。
image-20240827194343296

2. 模型原理

TOPSIS法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。它通过归一化后(去量纲化)的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理归想一解化和反理想解表示),分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在0~1之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。

3. 基本步骤

  1. 将原始矩阵正向化

    将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标

  2. 将正向化矩阵标准化

    标准化的方法有很多种,其主要目的就是去除量纲的影响,保证不同评价指标在同一数量级,且数据大小排序不

  3. 计算得分并归一化

    S i = D i − D i + + D i − S_{i}=\frac{D_{i}^{-}}{D_{i}^{+}+D_{i}^{-}} Si=Di++DiDi,其中 S i S_{i} Si为得分, D i + {D_{i}^{+}} Di+为评价对象与最大值的距离, D i − D_{i}^{-} Di

为评价对象与最小值的距离。

4. 典型例题

明星Kun想找一个对象,但喜欢他的人太多,不知道怎么选,经过层层考察,留下三个候选人。他认为身高165是最好的,体重在90-100斤是最好的。

候选人颜值牌气(争吵次数)身高体重
A910175120
B8716480
C6315790

4.1 矩阵正向化

常见的指标类型:

指标名称指标特点例子
极大型 (效益型) 指标越大(多)越好成绩、 GDP增速、 企业利润
极小型 (成本型) 指标越小(少)越好费用、 坏品率、污染程度
中间型指标越接近某个值越好水质量评估时的PH值
区间型指标落在某个区间最好体温、 水中植物性营养物量

在 TOPSIS 方法中,就是要将所有指标进行统一正向化,即统一转化为极大型指标。 那么就需要极小型、中间型以及区间型的指标进行转化为极大型指标。

指标名称公式
极大型(效益型)指标/
极小型(成本型)指标 x ~ = m a x − x \tilde{x} = max-x x~=maxx, x ~ \tilde{x} x~为指标值, m a x max max为指标最大值, x x x为指标值
中间型指标 { x i } \{x_i\} {xi} 是一组中间型序列,最优值是 x b e s t x_{best} xbest,$M = max{
区间型指标 x i {x_i} xi是一组区间型序列,最佳区间为 [ a , b ] [a,b] [a,b],正向化公式如下 M = m a x { a − m i n { x i } , m a x { x i } − b } , x ~ i = { 1 − a − x i M , x i < a 1 , a ≤ x i ≤ b 1 − x i − b M , x i > b M=max\{a-min\{x_i\}, max\{x_i\}-b\}, \widetilde{x}_i=\begin{cases}1-\frac{a-x_i}{M}, x_i<a\\1, a\leq x_i\leq b\\1-\frac{x_i-b}{M}, x_i>b\end{cases} M=max{amin{xi},max{xi}b},x i= 1Maxi,xi<a1,axib1Mxib,xi>b
  1. 颜值为极大型指标

  2. 脾气为极小型指标

    候选人颜值 m a x max max m a x − x max-x maxx
    A10100
    B7103
    C3107
  3. 身高为中间型指标

    候选人身高 x b e s t x_{best} xbest| x i − x b e s t x_i-x_{best} xixbest| x ^ i \hat{x}_i x^i
    A175165101
    B16416511/10
    C15716588/10
  4. 体重为区间型指标

    候选人体重 M M M x ^ i \hat{x}_i x^i
    A120200
    B80201/2
    C90201

正向化后的矩阵为

候选人颜值牌气(争吵次数)身高体重
A9000
B830.90.5
C670.21

4.2 正向矩阵标准化

标准化的目的是消除不同指标量纲的影响

假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下:
X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] X=\begin{bmatrix}x_{11}&x_{12}&\cdots&x_{1m}\\x_{21}&x_{22}&\cdots&x_{2m}\\\vdots&\vdots&\ddots&\vdots\\x_{n1}&x_{n2}&\cdots&x_{nm}\end{bmatrix} X= x11x21xn1x12x22xn2x1mx2mxnm
那么对其标准化后的矩阵记为Z,Z的每一个元素:
z i j = x i j ∑ i = 1 n x i j 2 z_{ij}=\frac{x_{ij}}{\sqrt{\sum_{i=1}^nx_{ij}^2}} zij=i=1nxij2 xij
即(每一个元素/根号下所在列元素的平方和)得到标准化矩阵Z:
Z = [ z 11 z 12 ⋯ z 1 m z 21 z 22 ⋯ z 2 m ⋮ ⋮ ⋱ ⋮ z n 1 z n 2 ⋯ z n m ] Z=\begin{bmatrix}z_{11}&z_{12}&\cdots&z_{1m}\\z_{21}&z_{22}&\cdots&z_{2m}\\\vdots&\vdots&\ddots&\vdots\\z_{n1}&z_{n2}&\cdots&z_{nm}\end{bmatrix} Z= z11z21zn1z12z22zn2z1mz2mznm
标准化后,还需要给不同指标加上权重,采用的权重确定方法有层次分析法、熵权法、Delphi法、对数最小二乘法。这里认为各个指标权重相同。

对上述矩阵进行标准化,得

候选人颜值牌气(争吵次数)身高体重
A0.669000
B0.5950.3940.9760.447
C0.4460.9190.2170.894

4.3 计算得分并归一化

定义最大值:

Z + = ( m a x { z 11 , z 21 , ⋯   , z n 1 } , m a x { z 12 , z 22 , ⋯   , z n 2 } , ⋯   , m a x { z 1 m , z 2 m , ⋯   , z n m } ) Z^+=(max\{z_{11},z_{21},\cdots,z_{n1}\},max\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,max\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z+=(max{z11,z21,,zn1},max{z12,z22,,zn2},,max{z1m,z2m,,znm})
定义最小值:
Z − = ( m i n { z 11 , z 21 , ⋯   , z n 1 } , m i n { z 12 , z 22 , ⋯   , z n 2 } , ⋯   , m i n { z 1 m , z 2 m , ⋯   , z n m } ) Z^-=(min\{z_{11},z_{21},\cdots,z_{n1}\},min\{z_{12},z_{22},\cdots,z_{n2}\},\cdots,min\{z_{1m},z_{2m},\cdots,z_{nm}\}) Z=(min{z11,z21,,zn1},min{z12,z22,,zn2},,min{z1m,z2m,,znm})
定义第i (i=1,2,…,n) 个评价对象与最大值的距离:
D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+=\sqrt{\sum_{j=1}^m(Z_j^+-z_{ij})^2} Di+=j=1m(Zj+zij)2
定义第i (i=1,2,…,n) 个评价对象与最小值的距离:
D i − = ∑ j = 1 m ( Z j − − z i j ) 2 D_i^-=\sqrt{\sum_{j=1}^m(Z_j^--z_{ij})^2} Di=j=1m(Zjzij)2
那么,我们可以计算得出第 i( i=1,2,…,n) 个评价对象未归一化的得分:
S i = D i − D i + + D i − S_i=\frac{D_i^-}{D_i^++D_i^-} Si=Di++DiDi

很明显 0≤Si≤1,且 Si 越大 Di+ 越小,即越接近最大值。

我们可以将得分归一化并换成百分制:
S i ~ = S i ∑ i = 1 n S i × 100 \widetilde{S_{\mathrm{i}}}=\frac{S_{\mathrm{i}}}{\sum_{i=1}^{n}S_{\mathrm{i}}}\times100 Si =i=1nSiSi×100

4.4 python代码实现

import numpy as np

# 从用户输入参评数目和指标数目
print("请输入参评数目:")
n = int(input())
print("请输入指标数目:")
m = int(input())

# 接受用户输入的类型矩阵
print("请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型")
kind = input().split(" ")

# 接受用户输入的矩阵并转化为向量
print("请输入矩阵:")
A = np.zeros(shape=(n, m))
for i in range(n):
    A[i] = input().split(" ")
    A[i] = list(map(float, A[i]))
print("输入矩阵为:\n{}".format(A))

# 极小型指标转化为极大型指标的函数


def minTomax(maxx, x):
    x = list(x)
    ans = [[(maxx-e) for e in x]]
    return np.array(ans)

# 中间型指标转化为极大型指标的函数


def midTomax(bestx, x):
    x = list(x)
    h = [abs(e-bestx) for e in x]
    M = max(h)
    if M == 0:
        M = 1  # 防止最大差值为0的情况
    ans = [[1-(e/M) for e in h]]
    return np.array(ans)

# 区间型指标转化为极大型指标的函数


def regTomax(lowx, highx, x):
    x = list(x)
    M = max(lowx-min(x), max(x)-highx)
    if M == 0:
        M = 1  # 防止最大差值为0的情况
    ans = []
    for i in range(len(x)):
        if x[i] < lowx:
            ans.append(1-(lowx-x[i])/M)
        elif x[i] > highx:
            ans.append(1-(x[i]-highx)/M)
        else:
            ans.append(1)
    return np.array([ans])


# 同一指标类型,将所有指标转化为极大型指标
X = np.zeros(shape=(n, 1))
for i in range(m):
    if kind[i] == "1":
        v = np.array(A[:, i])
    elif kind[i] == "2":
        maxA = max(A[:, i])
        v = minTomax(maxA, A[:, i])
    elif kind[i] == "3":
        print("类型三,请输入最优值:")
        bestA = eval(input())
        v = midTomax(bestA, A[:, i])
    elif kind[i] == "4":
        print("类型四,请输入区间[a,b]值a:")
        lowA = eval(input())
        print("类型四,请输入区间[a,b]值b:")
        highA = eval(input())
        v = regTomax(lowA, highA, A[:, i])
    if i == 0:
        X = v.reshape(-1, 1)  # 如果是第一个指标,直接赋值
    else:
        X = np.hstack((X, v.reshape(-1, 1)))  # 如果不是第一个指标,横向拼接
print("统一指标后矩阵为:\n{}".format(X))

# 对统一指标后的矩阵进行标准化处理
X = X.astype(float)  # 将X转化为浮点型
for i in range(m):
    X[:, i] = X[:, i]/np.sqrt(sum(X[:, i]**2))  # 对每一列进行归一化处理,即除以该列的欧几里得范数
print("标准化后矩阵为:\n{}".format(X))

# 最大值和最小值距离的计算
x_max = np.max(X, axis=0)  # 计算每一列的最大值
x_min = np.min(X, axis=0)  # 计算每一列的最小值
# 计算每一个参评对象与最优情况的距离d+
d_z = np.sqrt(np.sum(np.square(X-np.tile(x_max, (n, 1))), axis=1))
# 计算每一个参评对象与最差情况的距离d-
d_f = np.sqrt(np.sum(np.square(X-np.tile(x_min, (n, 1))), axis=1))
print("每个指标的最大值为:{}".format(x_max))
print("每个指标的最小值为:{}".format(x_min))

# 计算每一个参评对象的综合得分
s = d_f/(d_f+d_z)  # 根据d+和d-计算每一个参评对象的得分,其中s接近1表示越好,接近0表示越差
Score = 100*s/sum(s)  # 将得分转换为百分制
for i in range(n):
    print(f"第{i+1}个参评对象的得分为:{Score[i]}")

输入:

请输入参评数目:
3
请输入指标数目:
4
请输入类型矩阵:1. 极大型 2. 极小型 3. 中间型 4.区间型
1 2 3 4
请输入矩阵:
9 10 175 120
8 7 164 80
6 3 157 90
输入矩阵为:
[[  9.  10. 175. 120.]
 [  8.   7. 164.  80.]
 [  6.   3. 157.  90.]]
类型三,请输入最优值:
165
类型四,请输入区间[a,b]值a:
90
类型四,请输入区间[a,b]值b:
100

输出:

统一指标后矩阵为:
[[9.  0.  0.  0. ]
 [8.  3.  0.9 0.5]
 [6.  7.  0.2 1. ]]
标准化后矩阵为:
[[0.66896473 0.         0.         0.        ]
 [0.59463532 0.3939193  0.97618706 0.4472136 ]
 [0.44597649 0.91914503 0.21693046 0.89442719]]
每个指标的最大值为:[0.66896473 0.91914503 0.97618706 0.89442719]
每个指标的最小值为:[0.44597649 0.         0.         0.        ]
第1个参评对象的得分为:8.886366735657832
第2个参评对象的得分为:45.653341055701134
第3个参评对象的得分为:45.46029220864103
  • 16
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值