华为OD机试真题中的“光伏场地建设规划”题目,主要考察的是算法设计与实现能力,特别是在给定条件下如何优化光伏电站的建设位置以达到最大收益。以下是对该题目的详细解析和一般解题思路:
一、题目背景
题目设定在祖国西北部的一片大片荒地,该区域零星分布着湖泊、保护区和矿区,且整体光照条件良好,但部分区域光照不佳。某电力公司希望在这片区域建设多个光伏电站,以生产清洁能源。题目给出了每平方公里的土地发电评估数据,以及电站建设的具体要求和限制条件。
二、输入描述
第一行输入为调研的地区长、宽,以及准备建设的电站(长宽相等,为正方形)的边长和最低要求的发电量。之后的每行表示调研区域每平方公里的发电量。
三、输出描述
输出能够满足最低发电量要求的最大矩形区域数量。
四、解题思路
(1)数据解析:
首先,解析输入数据,获取地区的长、宽、电站边长和最低发电量要求。然后,将每平方公里的发电量数据存入二维数组中。
(2)遍历与计算:
使用两层循环遍历二维数组,以每个位置为起点,尝试构建边长为给定值的正方形区域。
在构建过程中,累加该区域内每平方公里的发电量。
如果累加的发电量达到或超过最低发电量要求,则记录一个有效区域。
(2)优化与剪枝:
为了提高效率,可以在遍历过程中加入剪枝条件,如当剩余区域宽度或长度小于电站边长时,提前结束内层循环。还可以考虑使用动态规划或滑动窗口等高级算法来优化计算过程。
输出结果:
统计并记录所有满足条件的有效区域数量。
输出该数量作为最终结果。
五代码实现
public class PhotovoltaicSitePlanning {
private static final Logger log = LoggerFactory.getLogger(PhotovoltaicSitePlanning.class);
/**
* 计算满足最低发电量要求的矩形区域数量。
*
* @param grid 二维数组,表示每平方公里的发电量
* @param sideLength 电站边长
* @param minPower 最低发电量要求
* @return 满足条件的矩形区域数量
*/
public static int maxValidRectangles(int[][] grid, int sideLength, int minPower) {
if (grid == null || grid.length == 0 || grid[0].length == 0 || sideLength <= 0 || minPower <= 0) {
return 0;
}
//区域的长
int rowCount = grid.length;
//列的宽
int colCount = grid[0].length;
int validRectangles = 0;
// 遍历所有可能的起点
for (int i = 0; i <= rowCount - sideLength; i++) {
for (int j = 0; j <= colCount - sideLength; j++) {
int totalPower = 0;
// 计算以(i, j)为起点的sideLength x sideLength区域的发电量
for (int k = 0; k < sideLength; k++) {
for (int l = 0; l < sideLength; l++) {
totalPower += grid[i + k][j + l];
}
}
// 如果发电量满足要求,则计数增加
if (totalPower >= minPower) {
System.out.println("符合条件的坐标: [" + i + "][" + j + "]");
validRectangles++;
}
}
}
return validRectangles;
}
public static void main(String[] args) {
// 示例输入
int[][] grid = {
{10, 20, 15, 5},
{5, 15, 25, 20},
{15, 5, 10, 25},
{20, 10, 15, 5}
};
//电站边长
int sideLength = 3;
//最低发电量要求
int minPower = 40;
// 调用函数并打印结果
int result = maxValidRectangles(grid, sideLength, minPower);
System.out.println("输出满足条件的有效区域数量: " + result);
}
}
六、运行示例解析
例如输入:
{
{10, 20, 15, 5},
{5, 15, 25, 20},
{15, 5, 10, 25},
{20, 10, 15, 5}
};
我们需要找出所有边长为 2 的正方形区域,其内部元素之和(即发电量)至少为 40。
对于每个可能的 2x2 正方形区域,我们计算其发电量:
(0,0)
到(1,1)
的区域:10 + 20 + 5 + 15 = 50
(有效)(0,1)
到(1,2)
的区域:20 + 15 + 15 + 25 = 75
(有效)(0,2)
到(1,3)
的区域:15 + 5 + 10 + 25 = 55
(有效)(1,0)
到(2,1)
的区域:5 + 15 + 15 + 5 = 30
(无效)(1,1)
到(2,2)
的区域:15 + 25 + 5 + 10 = 55
(有效,但与前一个重叠,不应重复计数)(1,2)
到(2,3)
的区域:25 + 20 + 10 + 15 = 70
(有效)(2,0)
到(3,1)
的区域:15 + 5 + 20 + 10 = 50
(有效)(2,1)
到(3,2)
的区域:5 + 10 + 10 + 15 = 40
(刚好满足要求,有效)(2,2)
到(3,3)
的区域:10 + 15 + 15 + 5 = 45
(有效)
但是,请注意,我们在计算有效区域时通常不会重复计数重叠的区域。因此,尽管有几个区域的发电量超过了 40,但它们实际上是同一个正方形(只是从不同的起点开始计算)。