
vllm
文章平均质量分 82
努力努力再努力呐
努力努力再努力
展开
-
【大模型微调】如何解决llamaFactory微调效果与vllm部署效果不一致如何解决
使用Qwen/Qwen1.5-0.5B-Chat训练对话模板不一样。回答的内容就会不一样。我们可以看到例如qwen模型的tokenizer_config.json文件,就可以看到对话模板,一般同系列的模型,模板基本都一致。可以通过更改chat_template(对话模板)内容,来实现自己想要的对话模板。原创 2025-04-09 09:53:21 · 1445 阅读 · 0 评论 -
【学习记录】大模型微调之使用 LLaMA-Factory 微调 Qwen系列大模型,可以用自己的数据训练
LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调,框架特性包括原创 2025-03-24 15:44:12 · 1957 阅读 · 0 评论 -
【记一次】AI微调训练步数计算方式
AI微调训练步数计算方式原创 2025-03-22 16:08:04 · 986 阅读 · 0 评论 -
【留一下记录】Vllm推理大模型在Linux环境下的学习笔记
Vllm学习笔记原创 2025-03-21 19:58:12 · 734 阅读 · 0 评论