讲解R_CNN原理

目录

一、R_CNN基本原理 ----重点知识

        1.目标检测-Overfeat模型

2.Ross Girshick提出R-CNN

3.CNN网络提取特征 

4.特征向量训练分类器SVM

5.非最大抑制(NMS)

6.修正候选区域

7.正负样本准备

8.预训练(pre-training) 

9.微调(fine-tuning)

二、R-CNN流程总结


一、R_CNN基本原理 ----重点知识

        对于一张图片当中多个目标,多个类别的时候。前面的输出结果是不定 的,有可能是以下有四个类别输出这种情况。或者N个结果,这样的话,网络模 型输出结构不定

        所以需要一些他的方法解决目标检测(多个目标)的问题,试图将一个检 测问题简化成分类问题

        1.目标检测-Overfeat模型

滑动窗口

        目标检测的暴力方法是从左到右、从上到下滑动窗口,利用分类识别目标。为了 在不同观察距离处检测不同的目标类型,我们使用不同大小和宽高比的窗口。如 下图所示:

 

        这样就变成每张子图片输出类别以及位置,变成分类问题。但是滑动窗口需要初 始设定一个固定大小的窗口,这就遇到了一个问题, 有些物体适应的框不一样,所以需要提前设定K个窗口,每个窗口滑动提取M 个,总共K x M 个图片, 通常会直接将图像变形转换成固定大小的图像,变形图像块被输入 CNN 分类器 中,提取特征后, 我们使用一些分类器识别类别和该边界框的另一个线性回归器。 

那这种方法是怎么去利用数据训练的?

        首先我们会准备所需要的训练集数据,每张图片的若干个子图片以及每张图片的 类别位置,如下我们从某张图片中滑动出的若干的图片。 

        这种方法类似一种暴力穷举的方式,会消耗大量的计算力量,并且由于窗口大小 问题可能会造成效果不准确 但是提供了一种解决目标检测问题的思路 

2.Ross Girshick提出R-CNN

        不使用暴力方法,而是用候选区域方法(region proposal method),创建 目标检测的区域改变了图像领域实现物体检测的模型思路, R-CNN是以深度神经网络为基础的物体检测的模型 ,R-CNN在当时以优异的性 能令世人瞩目, 以R-CNN为基点,后续的SPPNet、Fast R-CNN、Faster R-CNN模型都是照着 这个物体检测思路。    

     

步骤(以AlexNet网络为基准)

        1.找出图片中可能存在目标的侯选区域region proposal

        2.进行图片大小调整为了适应AlexNet网络的输入图像的大小227×227,通过 CNN对候选区域提取特征向量,2000个建议框的CNN特征组合成2000×4096维矩阵

        3.将2000×4096维特征与20个SVM组成的权值矩阵4096×20相乘(20种分类, SVM是二分类器,则有20个SVM),获得2000×20维矩阵

        4.分别对2000×20维矩阵中每一列即每一类进行非极大值抑制(NMS:nonmaximum suppression)剔除重叠建议框,得到该列即该类中得分最高的一些 建议框

        5.修正bbox,对bbox做回归微调  

        选择性搜索(SelectiveSearch,SS)中,首先将每个像素作为一组。然后, 计算每一组的纹理,并将两个最接近的组结合起来。但是为了避免单个区域吞噬 其他区域,我们首先对较小的组进行分组。我们继续合并区域,直到所有区域都 结合在一起。下图第一行展示了如何使区域增长,第二行中的蓝色矩形代表合并 过程中所有可能的 ROI。

        SelectiveSearch在一张图片上提取出来约2000个侯选区域,需要注意的是这 些候选区域的长宽不固定。 而使用CNN提取候选区域的特征向量,需要接受固定长度的输入,所以需要对 候选区域做一些尺寸上的修改。

        传统的CNN限制了输入必须固定大小,所以在实际使用中往往需要对原图片进行 crop或者warp的操作  

        crop:截取原图片的一个固定大小的patch warp:将原图片的ROI缩放到一个固定大小的patch 无论是crop还是warp,都无法保证在不失真的情况下将图片传入到CNN当中。会 使用一些方法尽量让图片保持最小的变形。

        1.各向异性缩放:即直接缩放到指定大小,这可能会造成不必要的图像失真

        2.各向同性缩放:在原图上出裁剪侯选区域, (采用侯选区域的像素颜色均值) 填充到指定大小在边界用固定的背景颜色

3.CNN网络提取特征 

        在侯选区域的基础上提取出更高级、更抽象的特征,这些高级特征是作为下一步 的分类器、回归的输入数据

        提取的这些特征将会保存在磁盘当中(这些提取的特征才是真正的要训练 的数据)  

4.特征向量训练分类器SVM

        假设一张图片的2000个侯选区域,那么提取出来的就是2000 x 4096这样的特征 向量(R-CNN当中默认CNN层输出4096特征向量)。 那么最后需要对这些特征进行分类,R-CNN选用SVM进行二分类。 假设检测N个类别,那么会提供20个不同类别的SVM分类器,每个分类器都会对 2000个候选区域的特征向量分别判断一次, 这样得出[2000, 20]的得分矩阵,如下图所示:

 

        每个SVM分类器做的事情 判断2000个候选区域是某类别,还是背景  

5.非最大抑制(NMS)

        目的 筛选候选区域,得到最终候选区域结果 迭代过程对于所有的2000个候选区域得分进行概率筛选 然后对剩余的候选框,每个类别进行IoU(交并比)>= 0.5 筛选

         假设现在滑动窗口有:A、B、C、D、E 5个候选框, 第一轮:假设B是得分最高的,与B的IoU>0.5删除。现在与B计算IoU,DE结果 >0.5,剔除DE,B作为一个预测结果 第二轮:AC中,A的得分最高,与A计算IoU,C的结果>0.5,剔除C,A作为一个 结果 最终结果为在这个5个中检测出了两个目标为A和B

6.修正候选区域

        那么通过非最大一直筛选出来的候选框不一定就非常准确怎么办?R-CNN提供了 这样的方法,建立一个bbox regressor 回归用于修正筛选后的候选区域,使之回归于ground-truth,默认认为这两个 框之间是线性关系,因为在最后筛选出来的候选区域和ground-truth很接近了 修正过程(线性回归)

        给定:anchor A=(A_{x}, A_{y}, A_{w}, A_{h}) 和 GT=[G_{x}, G_{y}, G_{w}, G_{h}] 寻找一种变换F,使得:F(A_{x}, A_{y}, A_{w}, A_{h})=(G_{x}^{'}, G_{y}^{'}, G_{w}^{'}, G_{h}^{'}), 其中(G_{x}^{'}, G_{y}^{'}, G_{w}^{'}, G_{h}^{'})≈(G_{x}, G_{y}, G_{w}, G_{h}) 

 

        R-CNN的训练过程这些部分,正负样本准备+预训练+微调网络+训练 SVM+训练边框回归器  

7.正负样本准备

        对于训练集中的所有图像,采用selective search方式来获取,最后每个图 像得到2000个region proposal。但是每个图像不是所有的候选区域都会拿去 训练。保证正负样本比例1:3

        这样得出若干个候选区域以及对应的标记结果。

8.预训练(pre-training) 

        CNN模型层数多,模型的容量大,通常会采用2012年的著名网络AlexNet来学习特 征,包含5个卷积层和2个全连接层, 利用大数据集训练一个分类器,比如著名的ImageNet比赛的数据集,来训练 AlexNet,保存其中的模型参数。

9.微调(fine-tuning)

        AlexNet是针对ImageNet训练出来的模型,卷积部分可以作为一个好的特征提 取器,后面的全连接层可以理解为 一个好的分类器。R-CNN需要在现有的模型上 微调卷积参数。 将第一步中得到的样本进行尺寸变换,使得大小一致,然后作为预训练好的网络 的输入,继续训练网络(迁移学习)

SVM分类器:

        针对每个类别训练一个SVM的二分类器。举例:猫的SVM分类器,输入维度是 2000 4096,目标还是之前第一步标记是否属于该类别猫,训练结果是得到SVM 的权重矩阵W,W的维度是4096 * 20。

bbox回归器训练:

        只对那些跟ground truth的IoU超过某个阈值且IOU最大的region proposal 回归,其余的region proposal不参与

R-CNN测试过程

        输入一张图像,利用selective search得到2000个region proposal。 对所有region proposal变换到固定尺寸并作为已训练好的CNN网络的输入, 每个候选框得到的4096维特征 采用已训练好的每个类别的svm分类器对提取到的特征打分,所以SVM的weight matrix是4096 N,N是类别数,这里一共有20个SVM, 得分矩阵是200020 采用non-maximun suppression(NMS)去掉候选框 第上一步得到region proposal进行回归。

二、R-CNN流程总结

 

 

表现

        在VOC2007数据集上的平均精确度达到66%

瓶颈:

        1、训练阶段多:步骤繁琐: 微调网络+训练SVM+训练边框回归器。

        2、训练耗时:占用磁盘空间大:5000张图像产生几百G的特征文件。 (VOC数据集的检测结果,因为SVM的存在)

        3、处理速度慢: 使用GPU, VGG16模型处理一张图像需要47s。

        4、图片形状变化:候选区域要经过crop/warp进行固定大小,无法保证图 片不变形

 

  • 17
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值