Transformer详解encoder

目录

1. Input Embedding

2. Positional Encoding

3. Multi-Head Attention

4. Add & Norm

5. Feedforward + Add & Norm

6.代码展示

(1)layer_norm

(2)encoder_layer=1


最近刚好梳理了下transformer,今天就来讲讲它~

        Transformer是谷歌大脑2017年在论文attention is all you need中提出来的seq2seq模型,它的本质就是由编码器和解码器组成,今天的主角则是其中的编码器(在BERT预训练模型中也只用到了编码器部分)如下图所示,这个模块的输入为 𝑋 (每一行代表一个句子,batchsize有多大就有多少行),我们将从输入到隐藏层按照从1到4的顺序逐层来看一下各个维度的变化。

1. Input Embedding

        所谓的Embedding其实就是查字典或者叫查表,也就是将一个句子里的每一个字转化为一个维度为embedding dimension的向量来表示,因此 𝑋 经过嵌入后变成 𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 ,三个维度分别表示一个批次的句子数,每个句子的字数,每个字的嵌入维度。

2. Positional Encoding

        位置编码,按照字面意思理解就是给输入的位置做个标记,简单理解比如你就给一个字在句子中的位置编码1,2,3,4这样下去,高级点的比如作者用的正余弦函数

𝑃𝐸(𝑝𝑜𝑠,2𝑖)=𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1)=𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙)

 

        其中pos表示字在句子中的位置,i指的词向量的维度。经过位置编码,相当于能够得到一个和输入维度完全一致的编码数组 𝑋𝑝𝑜𝑠 ,当它叠加到原来的词嵌入上得到新的词嵌入

𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔=𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔+𝑋𝑝𝑜𝑠

        此时的维度为:一个批次的句子数 × 一个句子的词数 × 一个词的嵌入维度

3. Multi-Head Attention

        注意力机制,其实可以理解为就是在计算相关性,很自然的想法就是去更多地关注那些相关更大的东西。这里首先要引入Query,Key和Value的概念,Query就是查询的意思,Key就是键用来和你要查询的Query做比较,比较得到一个分数(相关性或者相似度)再乘以Value这个值得到最终的结果。

        那么这个Q,K,V从哪里来呢,这里采用的是self-attention的方式,也就是从输入自己 𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 来产生,即做线性映射产生Q,K,V:

𝑄=𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔∗𝑊𝑄𝐾=𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔∗𝑊𝐾𝑉=𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔∗𝑊𝑉

        这里三个权重矩阵均为维度为Embedding的方阵,也就是说Q,K,V的维度和 𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 是一致的。

        接下来考虑什么叫做multi-head(多头)呢,本质上就是从embedding的维度上将矩阵切分为多份,每一份就是一个头,比如之前的Q,K,V切完后的维度就是一个批次的句子数 × 一个句子的词数 × 头数 × (词嵌入维度/头数)这个多头的切分体现在最后两个维度:词嵌入维度=数 × (词嵌入维度/头数)为了便于计算,通常会将第二第三维度进行转置,即最终的维度为一个批次的句子数 × 头数 × 一个句子的词数 × (词嵌入维度/头数)

        接下来说说注意力机制的计算,假设Q,K,V为切分完后的矩阵(其中一个头),根据两个向量的点积越大越相似,我们通过 𝑄𝐾𝑇 求出注意力矩阵,再根据注意力矩阵来给Value进行加权,即

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉)=𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇𝑑𝑘)𝑉

        其中 𝑑𝑘 是为了把注意力矩阵变成标准正态分布,softmax进行归一化,使每个字与其他字的注意力权重之和为1。这一操作使得每一个字的嵌入都包含当前句子内所有字的信息,注意Attention(Q,K,V)的维度和 𝑉 的维度保持一致。

4. Add & Norm

这里主要做了两个操作

  • 一个是残差连接(或者叫做短路连接),说得直白点就是把上一层的输入 𝑋 和上一层的输出加起来 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑋) ,即 𝑋+𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(𝑋) ,举例说明,比如在注意力机制前后的残差连接:

𝑋𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔+𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉)

  • 一个是LayerNormalization(作用是把神经网络中隐藏层归一为标准正态分布,加速收敛),具体操作是将每一行每一个元素减去这行的均值, 再除以这行的标准差, 从而得到归一化后的数值。

5. Feedforward + Add & Norm

前馈网络也就是简单的两层线性映射再经过激活函数一下,比如

𝑋ℎ𝑖𝑑𝑑𝑒𝑛=𝑅𝑒𝑙𝑢(𝑋ℎ𝑖𝑑𝑑𝑒𝑛∗𝑊1∗𝑊2)

残差操作和层归一化同步骤3.


上述的1,2,3,4就构成Transformer中的一个encoder模块,经过1,2,3,4后得到的就是encode后的隐藏层表示,可以发现它的维度其实和输入是一致的!即:一个批次中句子数 × 一个句子的字数 × 字嵌入的维度

6.代码展示

(1)layer_norm

bs=2,seq=3,dim=5

import torch

batch_size = 2
seq = 3
fea_dim = 5
X = torch.rand(batch_size,seq,fea_dim)
layer_norm = torch.nn.LayerNorm(fea_dim)
out = layer_norm(X)
print(out)
print('-'*30)

mean = torch.mean(X,dim=-1,keepdim=True)
std = torch.sqrt(torch.var(X,unbiased=False,dim=-1,keepdim=True) + 1e-5)
weight = layer_norm.state_dict()['weight']
bias = layer_norm.state_dict()['bias']
my_norm = ((X - mean)/std) * weight + bias
print(my_norm)

(2)encoder_layer=1

bs=1,seq=1,dim=6,head=1

import torch

seq = 1
dim = 6
heads = 1
batch_size = 1
value = torch.rand(batch_size,seq,dim)

encoder_layer = torch.nn.TransformerEncoderLayer(dim,heads,dropout=0.0,batch_first=True)
out = encoder_layer(value)
print(out)

# 多头自注意力
def my_scaled_dot_product(query,key,value):
    qk_T = torch.mm(query,key.T)
    qk_T_scale = qk_T / torch.sqrt(torch.tensor(value.shape[1]))
    qk_exp = torch.exp(qk_T_scale)
    qk_exp_sum = torch.sum(qk_exp,dim=1,keepdim=True)
    qk_softmax = qk_exp / qk_exp_sum
    v_attn = torch.mm(qk_softmax,value)
    return v_attn,qk_softmax

in_proj_weight = encoder_layer.state_dict()['self_attn.in_proj_weight']
in_proj_bias = encoder_layer.state_dict()['self_attn.in_proj_bias']

out_proj_weight = encoder_layer.state_dict()['self_attn.out_proj.weight']
out_proj_bias = encoder_layer.state_dict()['self_attn.out_proj.bias']

batch_V_output = torch.empty(batch_size,seq,dim)
for i in range(batch_size):
    in_proj = torch.mm(value[i],in_proj_weight.T) + in_proj_bias
    Qs,Ks,Vs = torch.split(in_proj,dim,dim=-1)
    head_Vs = []
    attn_weight = torch.zeros(seq,seq)
    for Q,K,V in zip(torch.split(Qs,dim//heads,dim=-1),torch.split(Ks,dim//heads,dim=-1),torch.split(Vs,dim//heads,dim=-1)):
        head_v,_ = my_scaled_dot_product(Q,K,V)
        head_Vs.append(head_v)
    V_cat = torch.cat(head_Vs,dim=-1)
    V_ouput = torch.mm(V_cat,out_proj_weight.T) + out_proj_bias
    batch_V_output[i] = V_ouput

# 第一次加
first_Add = value + batch_V_output

# 第一次layer_norm
norm1_mean = torch.mean(first_Add,dim=-1,keepdim=True)
norm1_std = torch.sqrt(torch.var(first_Add,unbiased=False,dim=-1,keepdim=True) + 1e-5)
norm1_weight = encoder_layer.state_dict()['norm1.weight']
norm1_bias = encoder_layer.state_dict()['norm1.bias']
norm1 = ((first_Add - norm1_mean)/norm1_std) * norm1_weight + norm1_bias

# feed forward
linear1_weight = encoder_layer.state_dict()['linear1.weight']
linear1_bias = encoder_layer.state_dict()['linear1.bias']
linear2_weight = encoder_layer.state_dict()['linear2.weight']
linear2_bias = encoder_layer.state_dict()['linear2.bias']
linear1 = torch.matmul(norm1,linear1_weight.T) + linear1_bias
linear1_relu = torch.nn.functional.relu(linear1)
linear2 = torch.matmul(linear1_relu,linear2_weight.T) + linear2_bias

# 第二次加
second_Add = norm1 + linear2

# 第二次layer_norm
norm2_mean = torch.mean(second_Add,dim=-1,keepdim=True)
norm2_std = torch.sqrt(torch.var(second_Add,unbiased=False,dim=-1,keepdim=True) + 1e-5)
norm2_weight = encoder_layer.state_dict()['norm2.weight']
norm2_bias = encoder_layer.state_dict()['norm2.bias']
norm2 = ((second_Add - norm2_mean)/norm2_std) * norm2_weight + norm2_bias
print(norm2)

  • 20
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Transformer模型是一种基于Attention机制的神经网络模型,用于自然语言处理任务。它的encoder部分由多个相同的层组成,每个层都由两个子层组成:自注意力层和前馈神经网络层。下面对encoder的两个子层进行详细介绍。 1. 自注意力层 自注意力层是Transformer模型中最重要的部分,它用于计算输入序列中每个词与其他词之间的关系,从而捕捉输入序列的全局信息。对于每个词,自注意力层都会计算该词与其他词之间的相似度得分,然后将这些得分作为权重对其他词进行加权求和,从而得到该词的表示。 具体来说,自注意力层使用一个线性变换将输入序列中的每个词映射到一个高维空间中,然后计算该词与其他所有词的相似度得分。这里使用了点积注意力机制,即将该词的表示与其他所有词的表示进行点积,然后除以一个缩放因子,最后通过Softmax函数将得分归一化,得到该词与其他所有词之间的权重。最后,将每个词的表示与它所对应的权重进行加权求和,得到该词的最终表示。 2. 前馈神经网络层 前馈神经网络层用于对自注意力层得到的表示进行非线性变换,从而捕捉更多的局部信息。具体来说,它采用两个线性变换和一个激活函数,将输入序列中每个词的表示映射到另一个高维空间中,然后再映射回原始维度,得到该词的最终表示。这个过程可以看作是对输入序列中每个词的局部信息进行编码和提取的过程。 总的来说,Transformer模型的encoder部分采用了多层自注意力层和前馈神经网络层的组合,用于对输入序列进行编码和提取特征。这种设计可以有效地捕捉输入序列的全局和局部信息,从而提高模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值