Spark 踩坑记录

Encoders.bean(Person.class) 调用报异常

  • 异常信息

    Exception in thread "main" java.lang.UnsupportedOperationException: Cannot infer type for class personal.leo.spark.Person because it is not bean-compliant
  • 原因: Bean的 getter,setter,不能使用 Builder 模式,否则会出现该错误

  • 例子

    • 正常代码

      public class Person implements Serializable<
spark streaming 是基于 spark 引擎的实时数据处理框架,可以通过集成 kafka 来进行数据流的处理。然而,在使用 spark streaming 进行 kafka 数据流处理时,可能会遇到一些。 首先,要注意 spark streaming 和 kafka 版本的兼容性。不同版本的 spark streaming 和 kafka 可能存在一些不兼容的问题,所以在选择版本时要特别留意。建议使用相同版本的 spark streaming 和 kafka,以避免兼容性问题。 其次,要注意 spark streaming 的并行度设置。默认情况下,spark streaming 的并行度是根据 kafka 分区数来决定的,可以通过设置 spark streaming 的参数来调整并行度。如果并行度设置得过高,可能会导致任务处理过慢,甚至出现 OOM 的情况;而设置得过低,则可能无法充分利用集群资源。因此,需要根据实际情况进行合理的并行度设置。 另外,要注意 spark streaming 和 kafka 的性能调优。可以通过调整 spark streaming 缓冲区的大小、批处理时间间隔、kafka 的参数等来提高性能。同时,还可以使用 spark streaming 的 checkpoint 机制来保证数据的一致性和容错性。但是,使用 checkpoint 机制可能会对性能产生一定的影响,所以需要权衡利弊。 最后,要注意处理 kafka 的消息丢失和重复消费的问题。由于网络或其他原因,可能会导致 kafka 的消息丢失;而 spark streaming 在处理数据时可能会出现重试导致消息重复消费的情况。可以通过配置合适的参数来解决这些问题,例如设置 KafkaUtils.createDirectStream 方法的参数 enable.auto.commit,并设置适当的自动提交间隔。 总之,在使用 spark streaming 进行 kafka 数据流处理时,需要留意版本兼容性、并行度设置、性能调优和消息丢失重复消费等问题,以免
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值