博弈论入门

4 篇文章 0 订阅

博弈论

是二人或多人在平等的对局中各自利用对方策略变换自己的对抗策略,达到取胜目标的理论。

博弈论是研究互动决策的理论。博弈可以分析自己与对手的利弊关系,从而确定自己在博弈中

的优势,因此有不少博弈理论,可以帮助对弈者分析局势,从而采取相应策略,最终达到取胜

的目的。

1.巴什博弈(Bash Game)

只有一堆n个物品,两人轮流从这堆物品中取物,规定每次至少取一个,最多取m个,最后取光

者得胜。

显然,如果n=m+1,1那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都

能够一次拿走剩余的物品,后者取胜。因此,我们发现如何取胜的法则:

每回合时m+1个,如果n=(m+1)*r+s,(r为任意自然数,s<=m),那么先取者要拿走s个物

品,如果后取者拿走k(<=m)个,那么先取者再拿走m+1-k个,结果剩下(m+1) (r-1)个,以

后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获

胜。

这个游戏还可以有一种变相的玩法:两个人轮流报数,每次至少报一个,最多报十个,谁能报到100

者胜。

下面介绍此类题目的通用方法:P/N分析:


P点:即必败点,某玩家位于此点,只要对方无失误,则必败;

N点:即必胜点,某玩家位于此点,只要自己无失误,则必胜。

三个定理:

1.所有终结点都是必败点P(上游戏中,论到谁拿牌,还剩0张牌的时候,此人就输了,因为无牌可取);

2.所有一步能走到必败点的就是N点;

3.所有一步操作只能到N点的就是P点;(hdoj 1846,2147,2149,2188)

2.斐波那契博弈(Fibonacci’s Game)

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1.先手不能在第一次把所有石子取完。

2.之后每次可以取的石子数介于1到对手刚取得石子数的2倍之间(包含1和对手刚取的石子数的2倍)

约定取走最后一个石子的人为赢家,求必败态。

这个和之后讲到的Wythoff's Game 和取石子游戏有一个很大的不同点,就是游戏规则的动态化,

前的规则中,被刺可以取得石子的策略集合基本是固定的,但是这次有规则:一方每次可以取的石子

数依赖于对手刚才取得石子数。

这个游戏叫做Fibonacci Nim,肯定和Fibonacci数列:f[n]:1,2,3,5,8,13,21,34,55,89...

有密切的关系。如果实验一番之后,可以猜测:先手胜当且仅当n不是Fibonacci数。换句话说,必败态

构成Fibonacci数列。

就像"Wythoff博弈"需要"Beatty定理"来帮忙一样,这里需要借助"Zeckendorf定理"(齐肯多夫定理):

任何正数可以表示为若干个不连续的Fibonacci数之和。定理的证明可以在这里看到。可以自己动手分解

下。比如,我们要分解83,注意到83被夹在55和89之间,于是可以把83些成55+28;然后想办法分解28;

28被夹在21和34之间,于是28=21+7;依此类推,故:

如果n=83,我们看看这个分解有什么指导意义:假如先手取2颗,那么后手无法取5颗或更多,而5是一个

Fibonacii数,如果猜测正确的话。(面临这5颗的先手实际上是整个游戏的后手)那么一定是先手取走这5

颗石子中的最后一颗,而这个我们可以通过第二类归纳法来绕过,同样的道理。接下去先手取走接下来的后

21颗中的最后一颗,再取走后55颗中的最后一颗,那么先手赢。

反过来如果n是Fibonacci数,比如n=89:记先手一开始所取的石子数为y,若y>=34颗(也就是89的向前两

项),那么一定后手赢,因为89-34=55=34+21<2*34,所以只需要考虑先手第一次取得石子数y<34的情

况即可,所以现在剩下的石子数x介于55到89之间,它一定不是一个Fibonacci数,x=55+f[i]+...+f[j],若,如

果f[j]<=2y,那么对B就是面临x局面的先手,所以根据之前的分析,B只要先取f[j]个即可,以后再按之前的分

就可以保证必胜。(hdoj2516)

3.威佐夫博弈(Wythoff Game)

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定两次至少取一个,多者不限,

最后取光者得胜。

这种情况是颇为复杂的。我们用(ak,bk)(ak<=bk,k=0,1,2,...n)表示两堆物品数量并称其为局势,如果甲面对(0,0),

那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13),(9,15),(11,18),

(12,20)。

可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而bk=ak+k,奇异局势有

如下三条性质:

1.任何自然数都包含在一个且有一个奇异局势中。

由于ak是未在前面出现过的最小自然数,所以有ak>ak-1,而bk=ak+k>ak-1+k-1=bk-1>ak-1。所以性质1成立。

2任意操作都可将奇异局势变为非奇异局势。

事实上若只改变局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如

果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

3.采用适当的方法,可以将非奇异局势变为奇异局势。

从如上性质可知,两个人如果都采取正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

4.(Betty定理):如果存在正无理数A,B满足1/A+1/B=1,那么集合P={[At],t∈Z+},Q={[Bt],t∈Z+}恰为集合Z+

的一个划分,即:P∪Q=Z+,P∩Q=空集。

5.上述矩阵中每一行第一列的数为[Φi],第二列的数为[(Φ+1)i],其中Φ=(sqrt(5)+1)/2为黄金分割比。

那么任给一个局势(a,b),怎么判断它是不是奇异局势呢?我们有如下公式:

ak=[k(1+sqtr(5)/2],bk=ak+k (k=0,1,2,...n方括号表示取整数)

奇妙的是其中出现了黄金分割数(1+sqrt(5))/2=1.618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+sqrt(5))=(aqrt(5)-1)/2,

可以先求出j=[a(aqrt(5)-1)/2],若a=[(1+aqrt(5)/2],那么a=aj,bj=aj+j,若不等于,那么a=aj+1+j+1,若都不是,那么就不是奇异局势,然后

再按照上述法则进行,一定会遇到奇异局势。(POJ 1067)

4.尼姆博弈(Nimm Game)

有三堆各若干个物品,两个人轮流从某一堆取任意多得物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇

异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一

下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

计算机算法里面有一种按位模2加,也叫做异或的运算。

先看看(1,2,3)的按位模2加的结果:

1=二进制01

2=二进制10

3=二进制11  (+)

---------------------------

0=二进制00(注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

任何奇异局势(a,b,c)都有a(+)b(+)c=0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设a<b<c,我们只要将c变为a(+)b,即可。

因为有如下的运算:a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c变为a(+)b,只要从c中减去c-(a(+)b)即可。

例:

1.(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

2.(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品就成了奇异局势(55,81,102)

(hdoj 1850)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值