Tensorflow 2.x 中的 dataset总结

今天学习Tensorflow 中的dataset,通过研究解决了几个之前的困惑,在这里总结一下

  1. dataset本质上是一个迭代器,因此dataset的repeat方法并不会增加内存的消耗,只是在原有数据集上增加几个循环的次数
  2. shuffle需要用到缓冲区,而且一般缓冲区大小大于等于数据集大小,在这篇文章中我对shuffle方法和buffer_size参数做了详细的分析->#深入探究# Tensorflow.Data.shuffle 方法的实现原理和 buffer_size 参数的作用
  3. batch 每次按batch_size返回batch_size个数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

energy_百分百

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值